作者单位
摘要
北京工业大学 信息学部 电子科学与技术学院, 北京 100124
建立了单载流子传输双异质结光敏晶体管的小信号等效电路模型.分析了单载流子传输双异质结光敏晶体管光生电流的产生机制, 并将其作为基极电流的一部分, 引入到小信号等效电路中.分析了单载流子传输双异质结光敏晶体管中单载流子传输的输运方式对光跨导、发射结电阻、发射结结电容和集电结结电容的影响.基于所建模型, 研究了InP基单载流子传输双异质结光敏晶体管的光特征频率和光电流增益受光窗口面积和入射光功率的影响.结果表明, 在同样入射光功率下, 存在一个最佳的光窗口面积使得光特征频率获得最大值, 最佳光窗口面积随入射光功率的增加在一定面积范围内发生偏移.在固定光窗口面积(8×8 μm2)条件下, 随着输入光功率的增加, 光特征频率先增大后减小, 在280 μW时达到最高值150 GHz, 光短路电流增益也随着光功率的增加而逐渐增加, 在入射光功率750 μW时达到饱和, 饱和增益为82 dB.
小信号等效电路模型 单载流子传输 光敏晶体管 光特征频率 光短路电流增益 Small signal equivalent model Uni-travelling carrier Phototransistor Optical characteristic frequency Gain of optical generated 
光子学报
2017, 46(11): 1125004
作者单位
摘要
北京工业大学 信息学部电子科学与技术学院, 北京 100124
详细对比并分析了双异质结单载流子传输光敏晶体管(Uni-travelling-carrier Double Heterojunction Phototransistor, UTC-DHPT)与单异质结光敏晶体管(Single Heterojunction Phototransistor, SHPT)在大的入射光功率范围下集电极输出电流特性.首先, UTC-DHPT仅选取窄带隙重掺杂的基区作为吸收区, 与SHPT选取基区和集电区作为吸收区相比, 其光吸收区厚度小, 在小功率入射光下UTC-DHPT的输出电流小于SHPT的输出电流.其次, 由于UTC-DHPT的双异质结结构, 光生电子和光生空穴产生于基区, 减弱了SHPT因光生空穴在集电结界面积累而产生的空间电荷效应, 避免了SHPT在小功率入射光下输出电流开始饱和的问题, 从而UTC-DHPT获得了比SHPT更大的准线性工作范围.最后, UTC-DHPT的单载流子(电子)传输方式使得基区产生的光生空穴以介电弛豫的方式到达发射结界面, 有效降低了发射结势垒, 增加了单位时间内由发射区传输到基区的电子数量, 提高了其发射结注入效率, 在大功率入射光下UTC-DHPT比SHPT能获得更高的输出电流.
光敏晶体管 单载流子传输 输出电流 空间电荷效应 发射结注入效率 phototransistor uni-travelling-carrier output current space charge effect emitter junction injection efficiency 
红外与毫米波学报
2017, 36(5): 594
作者单位
摘要
中国电子科技集团公司 第54 研究所,河北 石家庄 050081
针对国际上太赫兹器件技术进展予以概括和分析,提炼出共振隧穿二极管、单向载流子传输光电二极管2 种可行的小型化器件方案。在材料生长和器件结构方面分析了太赫兹波的产生原理和难点,在系统应用方面解释了短距离高速通信的实用案例。目前,采用共振隧穿二极管已实现2.5 Gbps 速率的300 GHz 无线通信演示实验,采用单向载流子传输光电二极管在该频点下实现了12.5 Gbps 的无线通信实验。
太赫兹 共振隧穿二极管 单向载流子传输光电二极管 微纳加工 terahertz resonant tunneling diode uni-travelling carrier photodiode micro and nano fabrication 
太赫兹科学与电子信息学报
2015, 13(3): 357
作者单位
摘要
清华大学 电子工程系 信息科学与技术国家实验室(筹),北京 100084
针对光探测器在倒装焊过程中频响性能恶化的问题,建立等效电路模型分析出其原因,并通过优化倒装焊工艺条件予以有效解决。该电路模型包括探测器芯片、过渡热沉和倒装焊环节三个部分。基于倒装焊后探测器的S11参数和频响曲线提取出倒装焊环节特征参数,确认焊点接触电阻过大是引起探测器频响下降的主要原因。通过优化倒装焊工艺条件,有效减小了焊点接触电阻,基本消除了倒装焊对探测器频响特性的影响。
光探测器 倒装焊 频响特性 背靠背叠层UTC探测器 焊点接触电阻 photodiode flip-chip bonding frequency response back-to-back uni-travelling-carrier photodiode bonding contact resistance 
半导体光电
2013, 34(5): 750

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!