孙俊杰 1,2,3王泽锋 1,2,3,*王蒙 1,2,3奚小明 1,2,3陈金宝 1,2,3
作者单位
摘要
1 国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
2 大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073
3 高能激光技术湖南省重点实验室, 湖南 长沙 410073
根据π相移光纤光栅的温度可调谐原理,使用半导体制冷器(TEC)和制冷片控制π相移光纤光栅的温度,从而改变其中心波长。随着温度升高,π相移光纤光栅的中心波长向长波方向线性漂移,温度从0 ℃变化到95 ℃时,中心波长从1548.921 nm变化到1550.664 nm,波长改变量为1.743 nm,灵敏度约为18.35 pm/℃。为了验证π相移光纤光栅温度调谐的特性,采用与其匹配的高反光纤光栅构成了C波段环形腔光纤激光振荡器,利用π相移光栅的窄带滤波特性实现了窄线宽激光输出,并通过控制π相移光栅的温度实现了输出激光波长的连续调谐。
光栅 温度调谐 π相移光纤光栅; 窄线宽激光器 可调谐激光 
光学学报
2017, 37(10): 1006004
孙俊杰 1,*王泽锋 1,2,3王蒙 1曹涧秋 1,2,3陈金宝 1,2,3
作者单位
摘要
1 国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
2 大功率光纤激光湖南省协同创新中心, 湖南 长沙 410073
3 高能激光技术湖南省重点实验室, 湖南 长沙 410073
窄线宽掺铒光纤激光器具有线宽窄、噪声低等优点, 在光纤通信、光纤传感、相干探测和合成等方面有广泛的应用。利用自行设计并制作的π相移光纤光栅和高反射率光纤布拉格光栅(FBG), 搭建了环形腔掺铒光纤激光器, 利用π相移光纤光栅的窄带滤波特性实现了1.5 μm波段的窄线宽掺铒光纤激光输出。当980 nm半导体激光抽运功率为5 W时, 激光输出功率为1.006 W, 光-光转换效率大于20%, 中心波长为1549.45 nm, 激光线宽为5.32 pm。输出光没有残余抽运光, 表明继续增加抽运光功率可以进一步提升激光功率。通过优化设计π相移光纤光栅的透射峰带宽、FBG的反射谱和激光腔结构, 有望实现高效、高功率的单纵模激光输出。
激光器 π相移光纤光栅 光纤布拉格光栅 窄线宽 掺铒光纤激光器 环形腔 
激光与光电子学进展
2017, 54(8): 081406
作者单位
摘要
1 山东省科学院激光研究所山东省光纤传感技术重点实验室, 山东 济南 250014
2 新南威尔士大学电子工程与通信学院, 澳大利亚 悉尼 2052
介绍了目前最常用的两种制作相移光纤光栅的方法,即分步曝光法(或遮挡法)和相位掩膜板移动法,对比分析了两种方法引入相移的物理机制,并利用传输矩阵法理论模型,数值模拟了两种制作方法下的相移光纤光栅透射谱,并分别进行了分布反馈光纤激光器(DFB-FL)的对比实验。结果表明,分步曝光法制作相移光纤光栅时,相移量与光栅中无曝光段的长度及纤芯折射率调制量均有关,难以精确控制相移量的大小,并且存在偏振模竞争问题;而相位掩膜板移动法通过压电陶瓷直线微动台控制掩膜板和光纤相对位移,在光栅中引入相位变换,可以将相移量控制在0~2π范围之内,更容易实现π相移光栅的制作。
光栅 分布反馈光纤激光器 π相移光纤光栅 相位掩膜板 
中国激光
2012, 39(s1): s105002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!