作者单位
摘要
1 西北农林科技大学, 陕西 杨凌 712100
2 国家林业和草原局泡桐研究开发中心, 河南 郑州 450003
预处理是木质纤维材料高效转化为燃料乙醇的关键步骤之一。 通过预处理可以实现木质素及半纤维素等屏障性组分的大量移除, 增加纤维素酶对纤维素的生产性吸附, 从而有效提高后续的酶水解得率。 泡桐(Paulownia)年产量大、 生长周期短、 加工废料多, 是制备生物能源和其他化学品极具潜力的原料。 为实现泡桐木质生物质原料到生物乙醇的高效转化, 促进泡桐原料的高效酶水解, 故而对原料进行预处理以打破其原有的生物抗性, 降解并脱除酶水解屏障性组分, 暴露并保留更多纤维素组分。 本研究以泡桐作为实验材料, 使用乙酸协同亚硫酸钠对原料进行化学预处理, 分析不同处理方法对原料化学组分及结构特性的影响。 组分分析显示: 预处理后, 样品葡聚糖相对含量均有不同程度增加, 其中碱性亚硫酸钠协同处理泡桐增加最为明显。 数据显示, 碱性亚硫酸钠协同处理具有很好的脱木素作用, 同时可以降解溶出部分木聚糖组分, 因此其葡聚糖相对含量显著增加至67.48%(未处理泡桐的葡聚糖相对含量为46.81%)。 此外, 分别采用FTIR, XRD及XPS等表征方法对所有泡桐样品的理化结构进行分析, 以探究不同预处理对样品结构产生的影响。 FTIR分析表明: 碱性亚硫酸钠协同处理后木质素特征吸收明显减弱, 纤维素特征吸收增强, 表明木质素有一定脱除, 纤维素相对含量有所增加。 XRD分析显示: 预处理后泡桐纤维表面受到破坏, 木质素及半纤维素等无定型物质被部分脱除, 纤维素结晶度均有不同程度增加。 其中, 碱性亚硫酸钠协同处理后纤维素结晶度显著增加至58.98%(未处理材的纤维素结晶度约为40.23%), 002峰位向右侧偏移, 衍射峰衍射强度明显增强, 峰形变高且尖锐程度增大; XPS分析表明: 碱性亚硫酸钠协同处理后, 样品表面碳水化合物含量增加, 表面木质素含量减少。 所有表征分析均显示碱性亚硫酸钠协同处理对泡桐结构破坏性最大, 木质素降解脱除程度最高, 纤维素保留程度最好, 这有助于增加纤维素酶对纤维素的可及性, 有效提高后续的纤维素酶水解效率, 进而促进泡桐原料到燃料乙醇的高效转化。 结构表征分析结果与化学组分规律保持一致。
速生泡桐 碱性亚硫酸钠协同处理 组分分析 X射线光电子能谱分析 结晶度 傅里叶变换红外光谱分析 Fast-growing Paulownia Alkaline sodium sulfite synergistic treatment Component analysis XPS analysis Crystallinity Fourier transform infrared spectroscopy analysis 
光谱学与光谱分析
2020, 40(2): 523
作者单位
摘要
1 临沂大学农林科学学院, 山东 临沂 276005
2 临沂大学药学院, 山东 临沂 276005
3 临沂大学资源与环境学院, 山东 临沂 276005
4 中国科学院沈阳应用生态研究所, 辽宁 沈阳 110016
森林土壤富含不同组分和功能的有机碳。 该研究以棕壤和褐土45年林龄的刺槐林下表层及底层土壤为对象, 研究其林下土壤腐殖酸组分在不同土壤类型和不同土层间的差异和变换。 褐土和棕壤表层及底层土壤分别定义为CO和CA, BO和BA。 应用傅里叶变换红外光谱对土壤腐殖质组分的富里酸(FA)、 胡敏酸(HA)和胡敏素(HM)进行了分析。 结果表明富里酸主要吸收峰为3 400 cm-1处的碳水化合物中—OH形成的氢键伸缩振动, 1 655 cm-1处的芳香环CC伸缩振动, 1 110 cm-1处的脂族C—OH伸缩振动。 与富里酸相比, 胡敏酸所含官能团与其相似, 差异在于其吸收峰强度较弱。 胡敏素在1 110 cm-1处的脂族C—OH伸缩振动和1 030 cm-1处多糖或类多糖物质的C—O伸缩振动较胡敏酸此处的峰吸收强度强。 根据分析, 表层土壤腐殖质官能团结构较底层土壤多且吸收强度强。 另外, 富里酸不同物质官能团数量及强度受土壤类型和土壤深度的影响较胡敏酸和胡敏素小。 根据不同吸收峰对比分析发现, 富里酸组分的芳化程度较强, 而胡敏酸和胡敏素的芳化作用仅表层土壤程度较强。 不同土壤类型胡敏酸组分分析表明, 棕壤表层土壤芳族和脂肪族物质吸收强度明显高于褐土。 综上, 土壤类型和土层显著影响45年林龄的刺槐林下土壤腐殖质组分, 尤其是胡敏酸和胡敏素组分。
腐殖质 傅里叶变换红外光谱分析 土壤类型 土层 森林土壤 Humic substances FTIR analysis Soil type Soil depth Long-term forest soil 
光谱学与光谱分析
2018, 38(4): 1298

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!