邓建南 1,2王晗 1,2姚洪辉 2,*张嘉荣 1,2[ ... ]颜晓强 1,2
作者单位
摘要
1 省部共建精密电子封装国家重点实验室, 广东 广州 510006
2 广东工业大学机电工程学院, 广东 广州 510006
随着光学非球面行业的快速发展,生产面形精度优于0.1 μm的非球面镜片产品已成为趋势。在非球面镜片的面形检测中,由于存在机械系统误差,被检测工件的坐标存在6个自由度的偏差,这将直接影响非球面的面形测量精度。因此,针对检测系统,需要开发不确定度只有几十纳米的误差校正算法,以保证测量结果更贴近实际。通过数据仿真,在理想非球面的基础上叠加位置误差和面形误差以获得非球面原始三维数据,进而利用修正后的Levenberg-Marquardt全局优化算法,将所获原始三维数据与非球面标准方程作对比,并利用均方根(RMS)误差最小原理,成功分离和校正了非球面的位置误差。针对4种不同规格型号的玻璃非球面镜片,通过将实验结果与商用非球面轮廓仪UA3P的测量结果作对比,得出高匹配的结果,二者的峰谷值之差小于5 nm,均方根相差约为0.1 nm,结果验证了算法的准确性和稳健性。
测量 光学非球面 面形检测 数据处理 误差分离 
光学学报
2022, 42(5): 0512004
作者单位
摘要
1 上海理工大学 机械学院,上海 200093
2 中国工程物理研究院 机械制造工艺研究所,四川 绵阳 621900
为了实现高精度光学非球面元件超精密抛光加工的需要,设计了光学非球面磁性复合流体抛光运动控制算法。通过分析光学非球面磁性复合流体抛光加工原理,建立抛光头在加工过程中相对非球面表面的位态变换关系,采用D-H法建立抛光试验台运动学模型,求解抛光过程中抛光头位姿量,运用逆向运动学求解方法计算试验台运动量;开展工艺实验,对该运动控制算法进行验证。实验结果表明,所设计的抛光运动控制算法能够准确指导光学非球面元件抛光加工。
光学非球面 磁性复合流体抛光 运动控制算法 运动学建模 D-H法 aspheric magnetic components magnetic compound fluid polishing motion control algorithm kinematic modeling D-H method 
光学仪器
2019, 41(5): 30
作者单位
摘要
上海理工大学 机械工程学院, 上海 200093
针对精密光学系统中对高精度光学非球面元件的加工需求,设计磁性复合流体抛光的直线光栅式运动轨迹,并通过运动轨迹和非球面方程计算出各抛光加工点坐标。根据工件表面形貌和抛光头运动姿态设计了抛光加工路径,建立各抛光加工点间的弓高误差模型,通过模型对工件表面弓高误差变化规律进行仿真分析。仿真结果表明,弓高误差会随着Y轴上步长的增大而增大。这对非球面超精密加工具产生了深远的影响,促进了光学元件超精密高效制造技术的发展。
磁性复合流体 光学非球面 误差分析 路径规划 magnetic composite fluid optical aspheric error analysis path planning 
光学仪器
2018, 40(2): 25
作者单位
摘要
1 厦门理工学院 机械与汽车工程学院, 福建 厦门 361024
2 厦门大学 物理与机电工程学院, 福建 厦门 361005
3 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
利用杯形砂轮修整器对圆弧砂轮进行修整,并采用非接触式位移传感器实现对圆弧砂轮的测量,提出将修整后圆弧砂轮的圆跳动误差值与圆弧半径误差值网格化后用于评价修整效果。根据磨削加工原理,计算匹配的修整测量参数并利用修整误差进行补偿加工。修整实验表明,杯形砂轮修整方式是一种理想的修整方式,对比传统的磨削加工,修整误差的补偿加工效果明显,两次补偿加工后的面形误差分别减小了36.5%和28.1%。
光学非球面 圆弧砂轮 修整评价 误差补偿 在位检测 optical aspheric lens cup-wheel truing truing evaluation error compensation on-machine measurement 
强激光与粒子束
2015, 27(4): 044102
作者单位
摘要
国防科技大学,机电工程与自动化学院,湖南,长沙,410073
在开发了一种专用非球面坐标测量机的基础上,分析了测量系统与工件在空间6个自由度上的相对位姿误差的关系,建立了位姿误差的数学模型.利用模型参数估计的方法,建立了测量数据与名义面形之间基于最小二乘法的优化模型,得到了上述位姿误差的最小二乘估计,并据此对工件面形误差测量结果进行校正,消除了位姿误差的影响,提高了测量结果的可信度与精度,最终使测量系统精度达到0.5 μm,重复精度优于0.3 μm.
光学非球面 坐标测量 位姿误差 模型参数估计 
光学 精密工程
2007, 15(8): 1229
作者单位
摘要
国防科技大学 机电工程与自动化学院,湖南 长沙 410073
研制了一种基于柱面坐标系的新型专用非球面坐标测量机,通过测量非球面多条子午截线实现对非球面形的全口径检测。在结构设计方面,采用了龙门框架加回转运动的形式,利用高精度气浮导轨实现水平运动,利用端齿盘实现对工件的精确分度,通过点位测量的方式实现对非球面形的高精度检测。在软件方面,建立了系统的数学模型和柱面坐标系下回转对称非球面形全口径检测算法,并在VC++6.0和Matlab平台上编制了测控软件和数据处理软件。系统最大测量口径为600 mm,测量高度为25 mm,最小测量步长为1 mm,经过系统误差补偿后,系统精度优于1 μm,满足了精磨、粗抛阶段非球面形检测要求。试验表明:系统运行良好,精度满足要求,同时具有良好的通用性,可用于非球面精磨、粗抛阶段的检测。
光学非球面 接触式测量 全口径检测 坐标测量机 Zernike多项式 optical aspherics contact-measurement full-aperture test Coordinate Measuring Machine(CMM) Zernike polynomial 
光学 精密工程
2006, 14(5): 835

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!