作者单位
摘要
1 西安科技大学测绘科学与技术学院, 陕西 西安 710054
2 中国科学院空天信息创新研究院, 北京 100094
3 上海海事大学文理学院, 上海 201306
日光诱导叶绿素荧光(SIF)能够敏感反映作物病害胁迫信息, 然而冠层几何结构等因素严重影响了SIF对植被光合功能变化及其受胁迫状况的捕捉能力。 为此, 将能够敏感反映作物群体生物量的归一化差值植被指数(NDVI)和MERIS陆地叶绿素指数(MTCI)与SIFP相融合(SIFP-NDVI, SIFP-MTCI, SIFP-NDVI*MTCI), 对比分析融合前后SIF对小麦条锈病的遥感监测精度。 结果表明: (1)融合反射率光谱指数的SIFP-NDVI, SIFP-MTCI和SIFP-NDVI*MTCI较融合前的SIFP与病情指数(DI)相关性均有不同程度的提高, 其中O2-B波段提高最为明显, 分别提高了23.48%, 33.61%和36.49%, O2-A波段提高量最小, 分别提高了2.39%, 2.14%和1.51%; (2)以SIFP-NDVI和SIFP-MTCI为自变量, 基于随机森林回归(RFR)算法构建的小麦条锈病遥感监测模型预测DI值和实测DI值间的R2较SIFP分别平均提高了1.15%和4.02%, RMSE分别平均降低了2.7%和14.41%; (3)综合利用NDVI和MTCI处理后的SIFP-NDVI*MTCI为自变量构建的小麦条锈病遥感监测模型精度最优, 其预测DI值和实测DI值间的R2较SIFP平均提高了5.74%, RMSE平均降低了22.52%。 研究结果对提高小麦条锈病遥感监测精度具有重要意义, 同时亦对其他作物的病害监测具有一定的参考价值。
小麦条锈病 日光诱导叶绿素荧光 融合 反射率光谱指数 随机森林回归 Wheat stripe rust Solar-induced chlorophyll fluorescence Integration Reflectance spectral index Random forest regression 
光谱学与光谱分析
2022, 42(3): 859
作者单位
摘要
国家卫星气象中心, 北京 100081
选取中国西北地区10个典型的用于辐射定标及仪器性能追踪的辐射定标场,在卫星过境时利用地面手持光谱仪和低空无人机(UAV)同步观测反射率光谱,系统比较了多个场地的反射率光谱差异,并开展了多个场地的光谱特征分析和参数建模研究。同一个场地一天内不同时间的光谱形状变化很小,光谱角小于5°,光谱幅度的变化主要受太阳天顶角和大气状况的影响,光谱幅度在不同天的同一时刻变化很小。不同场地的光谱形状和幅度差异较大。同一场地不同观测尺度下的光谱曲线基本吻合。通过分析发现,当波长小于1100 nm时,所有沙漠场的光谱曲线形状与三角反正切函数曲线相似。基于反正切函数进行地表反射率光谱建模,各场地实测光谱与模拟光谱的均方根误差均在0.6%以内,相关系数均在0.99以上,表明四参数光谱模型能够准确地描述沙漠场的反射率光谱。用模型计算的地表反射率替代场地实测的地表反射率进行FY-3D中分辨率光谱成像仪(MERSI)场地定标,可以发现,与基于实测光谱计算的结果相比,利用该模型得到的MERSI各个波段的相对偏差小于3%,表明构建的沙漠四参数反射率光谱模型可以很好地应用在MERSI的定标中。
遥感 地表反射率光谱 沙漠定标场网 反正切函数 光谱建模 
光学学报
2022, 42(6): 0628003
郑丽珍 1,2,*胡道道 1,2
作者单位
摘要
1 陕西师范大学材料科学与工程学院, 陕西 西安 710119
2 陕西师范大学历史文化遗产保护教育部工程研究中心, 陕西 西安 710119
文物壁画在自然环境下产生褪色现象具有复杂性, 严格意义上讲, 人们无法重现自然环境下这种褪色发生的条件, 但这并不妨碍人们研究其褪色原因的可能性和途径。 通过实验来验证所提出机制的合理性, 这也符合自然科学普遍采用的研究方法。 提出颜料层微观形貌变化是引起壁画褪色的一种重要原因。 胶料作为颜料层的连续相, 当胶料分解时, 颜料层微观形貌必然产生变化, 为证明这种变化会引起颜料层褪色, 而非颜料变化所致。 建立了以具有较高热稳定性的赭石为颜料, 以明胶作为粘接剂制成模拟的壁画颜料层。 然后通过加热处理使胶料发生氧化分解, 从而造成颜料层微观形貌发生变化, 但赭石颜料依然稳定, 期望证明在颜料赭石不发生变化时, 由于颜料层微观形貌变化也可引起颜料褪色。 实验通过煅烧壁画颜料层模拟样获得胶料降解的壁画模型, 分别以SEM及多角度反射率光谱等技术, 考察模拟样胶料降解前后表面微观形貌和光学性质变化。 结果表明: 壁画模拟样煅烧后, 颜料层表面产生空隙结构, 样品表面多角度反射率光谱表明煅烧后样品颜料层对可见光的反射增加而吸收降低, 并观察到模拟样颜色淡化。 以无色, 难挥发, 且不与颜料层发生化学反应的离子液体涂覆褪色样品表面, 以上述技术表征涂覆处理前后颜料层表面微观形貌和表面光学性质变化, 结果表明: 离子液体填充了褪色样品表面颗粒间空隙, 检测到样品表面对可见光的反射降低而吸收增加, 观察到褪色样品的颜色加深。 以上实验结果证明了推测合理性, 即微观形貌变化确实会引起颜色变化。 依据此原理以唐代墓室褪色壁画为例, 进行了显现修复应用研究, 其颜色显现效果显著。
古代壁画 褪色 微观形貌 光散射 多角度反射率光谱 Ancient mural Fading Morphology Scattering Multiple-angled reflectance spectra 
光谱学与光谱分析
2021, 41(5): 1493
作者单位
摘要
1 上海理工大学生物医学光学与视光学研究所医用光学技术与仪器教育部重点实验室, 上海 200093
2 同济大学医学院光医学研究所, 上海市皮肤病医院, 上海 200443
3 上海理工大学现代光学系统重点实验室教育部光学仪器与系统工程研究中心, 上海 200093
在生物医学领域,为了降低成本,降低对高端器件的依赖,以及实现对无标记样本的光谱和结构等多维度图像分析的目的,基于窄带LED光源技术,自主研制了一套多通道LED照明的多光谱显微成像系统。本系统在420~680nm范围内系统的光谱分辨率约为20nm,空间分辨率优于2μm,在放大倍数为13倍时成像范围为520μm × 416μm。为了验证系统在临床病理分析中的可行性,采集了小鼠皮肤鳞状细胞原位癌病变病理切片和正常皮肤组织病理切片的多光谱图像。从多光谱图像中可以清楚地观察结构,由图像序列中提取的光谱信息表明,癌变细胞核的反射率在可见光波段内与正常细胞核有明显差异,能有效区分两种细胞。这些实验结果表明,基于LED照明的多光谱显微成像系统有望替代传统昂贵、复杂的多光谱成像系统,并可在病理分析中发挥重要作用。
生物光学 显微成像 多光谱成像 反射率光谱 LED光源 组织病理学 
中国激光
2020, 47(12): 1207006
作者单位
摘要
1 中国科学院热带海洋生物资源与生态重点实验室(LMB), 广东 广州 510301
2 中国科学院海南热带海洋生物重点实验站, 海南 三亚 572000
3 济宁市第一人民医院真菌实验室, 山东 济宁 272111
珊瑚礁地物光谱特征是珊瑚礁遥感研究的理论基础, 可以作为遥感定性和定量研究珊瑚礁的依据。 采用我国南海三亚湾鹿回头海域的优势物种疣状杯形珊瑚(Pocillopora verrucosa)为研究对象, 用光纤光谱仪测量其反射率光谱。 利用珊瑚反射率光谱和导数分析的方法研究了健康和白化两种状态下疣状杯形珊瑚的反射率光谱的差异。 研究分析的结果显示: 健康疣状杯形珊瑚的反射率光谱, 在波长580, 604.7和647 nm处出现了特征波峰, 在波长669 nm处出现一个显著的波谷; 白化疣状杯形珊瑚的反射率光谱明显高于健康疣状杯形珊瑚的反射率光谱, 但是其波形相对较为平缓, 在波长663 nm处存在一个相对较弱的波谷。 反射率光谱导数分析发现健康与白化疣状杯形珊瑚存在多个可区分波段, 其中主要可区分波段包括: 一阶导数, 404~425, 456~466, 513~532, 563~568和661~667 nm等; 二阶导数, 408~420, 542~556, 563~573, 615~634和687~695 nm等; 四阶导数, 402~418, 466~472, 478~481, 617~622和684~689 nm等。
三亚湾鹿回头 疣状杯形珊瑚 反射率光谱 Lu Huitou Sanya Pocillopora verrucosa Reflectance spectrum 
光谱学与光谱分析
2020, 40(2): 441
袁静 1,2王鑫 1,2颜昌翔 1
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
土壤含水量的变化情况与时空分布对热量平衡、 农业墒情等具有显著的影响。 利用反射率光谱信息反演土壤含水量的研究, 可为实现土壤含水量速测、 揭示土壤含水量时空变异规律提供科学依据。 构建不同含水量黑土土壤反射率光谱半经验模型, 深入探究土壤重量含水量与反射率光谱的关系。 制备了12种不同湿度的土壤样品。 采用ASD Field Spec Pro 3地物波谱仪对制备的不同湿度梯度的黑土土壤进行反射率光谱测量。 利用菲涅耳反射率建立土壤表面反射模型; 在以往的研究中, Kubelka-Munk (KM)模型中的漫反射率R∞通常被视为对于给定材料和照明波长的常数或需要反演的参数。 通过研究发现, 漫反射率R∞不仅与材料和波长有关, 还与土壤含水量相关。 利用与土壤含水量相关的吸收系数及散射系数描述了土壤含水量与漫反射率R∞的关系, 并基于KM理论对体散射分量进行建模; 进而构建不同含水量黑土土壤反射率光谱半经验模型。 根据实际测量数据选用最小二乘算法对模型参数进行反演, 并通过分析反演参数简化模型。 最后, 将未参与建模的不同含水量梯度的数据代入模型中, 验证模型的有效性。 结果表明: 对比不同含水量土壤反射率光谱的模拟值与实测值在400~2 400 nm波段范围内的模拟精度发现, 含水量为200 g·kg-1的土壤反射率光谱的均方根误差最大, 为0.008, 含水量为40 g·kg-1的土壤反射率光谱的均方根误差最小, 为0.000 6, 不同含水量下土壤样品反射率光谱的均方根误差的均值是0.005 1。 在400~2 400 nm波段范围内, 不同波长下黑土土壤反射率光谱的预测均方根误差基本低于0.008, 1 920 nm波长处的预测均方根误差最小, 为0.002 062。 采集长春地区的土壤检验模型的可靠性, 配制15个不同含水量样品并对其进行反射率光谱测量。 选取9个样品数据用于建模, 6个样品数据用于验证。 结果表明: 在400~2 400 nm波段范围内, 不同波长下的长春土壤反射率光谱的预测均方根误差基本低于0.015, 525 nm波长处的预测均方根误差最小, 为0.000 922 5。 综上所述, 所建立的模型具有很高的预测精度, 可很好地适用于不同含水量黑土土壤反射率光谱的模拟。
遥感 黑土土壤含水量 反射率光谱 半经验模型 Remote sensing Black soil moisture content Reflectance spectra Semi-empirical model 
光谱学与光谱分析
2019, 39(11): 3514
作者单位
摘要
1 中山大学地理科学与规划学院, 广东 广州 510275
2 广东省水环境遥感监测工程技术研究中心, 广东 广州 510275
3 中山大学新华学院, 广东 广州 510520
4 广东省环境监测中心, 广东 广州 510308
目前水体重金属遥感反演相关研究仍比较薄弱。 自然界中重金属污染水体的光谱特征研究是重要的基础性工作, 是将来实现卫星遥感反演时波段选择的重要理论依据, 也是遥感反演模型所必须的基础参数。 首先利用Analytical Spectral Devices(ASD)光谱仪, 测量获得以大宝山尾矿水为例的典型重金属污染水体在两种水深和两种光照条件下的离水反射率光谱曲线, 发现在600~700 nm(红波段)均有稳定的反射峰, 然后进一步与自然界常见的两类水体(浑浊水体和富营养化水体)的反射峰位置进行对比, 发现: 以长湖水库石英砂厂附近为例的浑浊水体反射峰在550~700 nm(绿、 红波段), 以北江韶关冶炼厂附近为例的富营养化水体反射峰在550~600 nm(绿波段), 3种水体的反射峰位置各异, 说明该重金属污染水体反射率光谱与这两类水体具有很好的可分性。 然后在测量水体反射率基础上, 结合水质遥感模型和进行室内消光系数测量, 反演得到大宝山尾矿水体的总散射系数和总吸收系数光谱, 并进一步分离水分子吸收作用, 最终得到水中成分的综合吸收系数光谱曲线, 结果表明: 在紫光波段吸收最强, 在红光波段吸收最弱; 具体表现为: 从400 nm开始, 吸收系数快速递减, 在蓝绿光波段递减速度变缓, 从黄光波段又开始快速递减, 到676 nm达到极小值, 然后又快速增强至750 nm, 随后变化减缓。 最后结合水样的水质化验结果, 对该重金属污染水体的光谱成因进行分析, 发现现场水色和水中成分的综合吸收系数光谱特征皆与作者前期研究测量获得的硫酸铁溶液颜色及其吸收系数光谱特征吻合, 因此认为水中成分的光谱特征是由硫酸铁及其水解产物所引起。 以上说明该重金属污染水体的光谱特征明显, 反射峰和强吸收波长位置明确, 这是将来利用卫星遥感手段反演水中重金属浓度的重要特征波段。 该研究获得了以大宝山尾矿水为例的典型重金属污染水体反射率、 消光系数、 散射系数和吸收系数的光谱结果, 为日后推广至其他种类重金属矿的尾矿水体及水中成分光学参数反演提供方法依据, 也为将来利用卫星遥感技术对水中重金属浓度进行定量提取打下良好的理论基础。
水体重金属污染 反射率光谱 吸收光谱 光谱特征分析 水体重金属遥感 Heavy metal polluted water Reflectance spectrum Absorption spectrum Spectral characteristic analysis Remote sensing of heavy metal in water 
光谱学与光谱分析
2019, 39(10): 3237
作者单位
摘要
1 中国科学院热带海洋生物资源与生态重点实验室(LMB), 广东 广州 510301
2 中国科学院海南热带海洋生物重点实验站, 海南 三亚 572000
3 山东省济宁市第一人民医院, 山东 济宁 272111
4 中国科学院三亚深海科学与工程研究所, 海南 三亚 572000
为了进一步深入研究不同形状和不同颜色珊瑚的光谱特征, 选择三亚湾鹿回头海域两种常见造礁石珊瑚(褐色片状珊瑚: 盾形陀螺珊瑚(Turbinaria peltata)和蓝灰色块状珊瑚: 精巧扁脑珊瑚(Platygyra daeda))为样本进行测量和分析。 于2015年7月22日上午采集两种珊瑚样品各7组。 样品块大小~6 cm, 并将其暂养于中国科学院海南热带海洋生物重点实验站岸基实验室珊瑚养殖缸, 养殖缸内水温控制在~26 ℃。 待样品块暂养≥4小时后用光纤光谱仪测量其反射率, 光谱采集条件为无云遮挡的晴天。 所用光纤光谱仪(海洋光学USB2000+), 波段为200~850 nm, 光谱分辨率1.34 nm, 步长0.6 nm, 视场角为25°。 珊瑚样品置于缸内的平台上, 过滤后恒温~26 ℃的海水持续注入以保证缸内水温恒定; 多余的海水自动从养殖缸上壁溢出以排除因光线折射入水体后引起的“汇聚现象”; 养殖缸内壁采用黑色尼龙布贴壁, 以避免玻璃缸壁光线反射对测量结果的影响。 光纤光谱仪的探头与样品间距保持在5 cm, 每个样品重复测量10次取平均值以代表该样品的光谱反射率。 测量光源为太阳光, 每次测量前校正一次光谱仪, 选用可见光波段的反射率光谱进行数据分析。 反射率光谱导数分析可以放大光谱间的差异, 四阶导数光谱法在提高检测灵敏度、 改善分辨率和加强抗干扰力等方面具有独特的优点, 故此对所测珊瑚光谱反射率数据进行反射率光谱数据一阶导数、 二阶导数和四阶导数分析, 根据盾形陀螺珊瑚和精巧扁脑珊瑚反射率光谱导数之间的差异确定两种珊瑚光谱的敏感可区分波段。 分析结果发现, 可见光范围内两种珊瑚反射率差异明显; 后者反射率光谱明显高于前者, 仅~700 nm出现类似较高反射率。 盾形陀螺珊瑚反射率介于4%~15%之间, 波峰和波谷明显。 400~450 nm反射率相对较低约为4%~5%; 480 nm后急升至~10%, 502, 578, 604和652 nm附近为明显波峰; 随后激增至700 nm的~36%。 精巧扁脑珊瑚反射率介于6%~16%之间; 400~420 nm波长附近反射率值相对较低, 为~6%; 420~470 nm急剧升高至~15%, 486 nm附近出现宽大波峰, 为该珊瑚的特征峰; 486, 577, 607和650 nm处也存在四个明显波峰; 随后剧增至700 nm的~37%。 光谱反射率导数分析结果表明盾形陀螺珊瑚和精巧扁脑珊瑚可区分波段为: 一阶导数483.7~492.6, 496.2~500和533.5~540.5 nm。 二阶导数414~422.7, 499.4~504, 520.2~523.3, 534.2~536.6, 557.5~561和671.8~675 nm。 四阶导数414~417.6, 427.4~430.3, 433.4~436.5, 452.3~455.5和657.1~659.1 nm。
三亚湾鹿回头 盾形陀螺珊瑚 精巧扁脑珊瑚 反射率光谱 Lu Huitou Sanya Bay Platygyra daeda Turbinaria peltata Reflectance spectrum 
光谱学与光谱分析
2019, 39(3): 873
作者单位
摘要
1 中国科学院热带海洋生物资源与生态重点实验室(LMB), 广东 广州 510301
2 中国科学院海南热带海洋生物重点实验站, 海南 三亚 572000
3 山东省济宁市第一人民医院, 山东 济宁 272111
以南海三亚湾鹿回头海域八种常见造礁石珊瑚优势种的反射率光谱为代表, 用光谱仪测量它们和此海域常见底质石莼以及碎石的反射率光谱。 通过反射率、 导数光谱法研究了三亚鹿回头海域造礁石珊瑚、 石莼和碎石的光谱差异。 石莼于561.4 nm处出现反射率高达48%左右的显著波峰, 在500~700 nm波长范围和造礁石珊瑚反射率差异较大; 碎石反射率明显高于造礁石珊瑚反射率, 整体差异显著。 导数分析结果表明造礁石珊瑚、 石莼和碎石可区分波段为: 造礁石珊瑚与石莼主要为一阶导数在485~487, 505~510, 515~529, 559~578, 587~593, 598~603和667~670 nm等波段。 二阶导数在494.4~505.7, 524~534.5, 543.6~561.4和567.2~579.7 nm波段。 四阶导数在515.8~430, 621~627.1, 628.8~635.6, 639.3~645, 661.8~669.8和678.4~682.4 nm等波段。 造礁石珊瑚与碎石一阶导数反射光谱, 主要为400~413.7, 414~418, 484.8~486.9, 506~509.6, 514.5~528.9, 576.9~587.6和602.7~653.4 nm波段。 二阶导数主要为, 451.6~461.6, 564.5~570.7和677~685 nm。 四阶导数主要为, 412.6~425.3, 459.8~467, 467.7~470.6, 535.6~540.8, 583.8~591.4, 654.4~659.8和670.8~680 nm等波段。
三亚湾鹿回头 造礁石珊瑚 石莼 碎石 反射率光谱 Lu Huitou Sanya Bay Scleractinian coral Ulva Coral rubble Reflectance spectrum 
光谱学与光谱分析
2019, 39(2): 500
作者单位
摘要
1 中国科学院热带海洋生物资源与生态重点实验室(LMB), 广东 广州 510301
2 中国科学院海南热带海洋生物重点实验站, 海南 三亚 572000
3 济宁市第一人民医院医学真菌实验室, 山东 济宁 272111
4 中国科学院三亚深海科学与工程研究所, 海南 三亚 572000
以海南三亚湾鹿回头附近海域常见的8种优势造礁石珊瑚的反射率光谱代表该海域珊瑚的反射率光谱, 用光纤光谱仪测量它们和此海域常见底质团扇藻、 砂的反射率光谱。 利用反射率、 导数光谱法分析研究了该海域造礁石珊瑚、 团扇藻和砂反射率光谱的差异。 分析表明500~ 700 nm和珊瑚反射率差异相对较大; 珊瑚反射率光谱明显低于砂反射率光谱, 反射率谱线整体差异显著。 导数分析结果显示造礁石珊瑚、 团扇藻和砂的可区分波段为: 石珊瑚与团扇藻的一阶导数, 主要为415.1~425.6, 482~487, 514.5~529, 577~587.6和631.9~644 nm等波段。 二阶导数主要为, 413~418.7, 427.4~432.5, 462.3~470.6, 494.4~503.6, 551.6~561.4, 590~594和639~643 nm波段。 四阶导数主要为, 412.2~418.4, 420.5~425.3, 470.9~480.2, 481.3~486.9, 540.8~545.7, 560~568.3和635.6~639.6 nm等波段。 石珊瑚与砂的一阶导数, 主要为400~413.7, 514.5~529.6, 576.9~587.6和602.7~667 nm波段。 二阶导数主要为, 420.5~430.7, 446.9~458.8, 467.3~472.3, 537~544.3, 556.8~561.4, 582.8~587.2和637.6~649.4 nm。 四阶导数主要为, 414.4~418.7, 419.5~430.3, 486.9~495.8, 534.2~540.1, 579~583.1, 622.7~627.5, 640~645和665.4~672.8 nm等波段。
三亚湾鹿回头 珊瑚 团扇藻  反射率光谱 Lu Huitou Sanya Bay Coral Padina Pavonica Coral sand Reflectance Spectrum 
光谱学与光谱分析
2018, 38(11): 3483

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!