李凌冰 1,2符礼丹 2,3史小静 2王远大 4[ ... ]胡振华 2,5,*
作者单位
摘要
1 解放军总医院第二医学中心,北京 100853
2 中国科学院自动化研究所中国科学院分子影像重点实验室,北京 100190
3 中国科学院大学人工智能学院,北京 100049
4 解放军总医院第一医学中心,北京 100853
5 中国人民解放军总医院肾脏疾病全国重点实验室,北京 100853
浅静脉清晰成像对于透析患者动静脉内瘘术前手术路径规划和术中引导手术治疗等具有重要作用,对临床疾病的诊断和治疗具有重要作用。目前临床上常用的血管成像方法能够清晰地实现血管的成像,但对静脉血管网的成像效果难以满足临床需求。笔者利用临床获批的荧光染料吲哚菁绿(ICG)开展了前臂血管的近红外二区(NIR-II)荧光成像,结合人工智能算法获得分辨率更高的血管NIR-IIb荧光图像,更准确地描绘浅表细小血管的直径。在此基础上,笔者继续结合Fluent流体仿真模拟方法,辅助医生在术前判断主干引流静脉,并在术中结扎中选择主干引流静脉进行保留,对大侧枝引流静脉进行结扎,提高患者肾透析血液通路手术的成功率。利用荧光血管造影技术结合模拟方法引导肾透析血液通路手术将桡动脉接入头静脉,手术的早期通畅率为100%(8/8),而接受常规手术的对照组的早期通畅率为73.33%(11/15)。本研究验证了NIR-II荧光血管造影技术的安全性和有效性,并在此基础上进一步验证了荧光成像结合人工智能算法在肾透析血液通路手术中潜在的应用价值。
医用光学 近红外二区荧光 荧光血管造影 吲哚菁绿 人工智能 计算机仿真模拟 
中国激光
2024, 51(9): 0907014
张建 1,2梁超豪 1罗志佳 1孟凡 1[ ... ]王倩 1,*
作者单位
摘要
1 广州医科大学生物医学工程学院医学影像创新实验室,广东 广州 511436
2 广州医科大学附属第一医院呼吸疾病国家重点实验室,广东 广州 510120
巨噬细胞作为炎症阶段的主要吞噬细胞,其高表达是急性呼吸道炎症发展过程的临床特征之一。目前还没有一种成像方法能够以深组织穿透性和高分辨率的方式呈现巨噬细胞在急性炎症中的表达。以吲哚菁绿纳米颗粒(Nano-ICG)作为一种高效的光声成像(PAI)增强造影剂,评估了急性呼吸道炎症中巨噬细胞的表达量。激光共聚焦显微镜下的成像效果证实,Nano-ICG能够快速地被巨噬细胞吞噬。利用Nano-ICG增强光声成像效果后,气管内的PAI结果显示了巨噬细胞在炎症后气管壁上的分布区域。Nano-ICG增强的光声成像能够无创、定量地评估急性呼吸道炎症的发展程度,有望为呼吸疾病相关基础研究和临床诊疗提供新的影像技术支持。
医用光学 光声成像 急性呼吸道炎症 吲哚菁绿纳米颗粒 巨噬细胞 
中国激光
2024, 51(9): 0907012
作者单位
摘要
上海理工大学 光电信息与计算机工程学院,上海 200093
设计了一种利用牛血清蛋白(bovine serum albumin,BSA)包裹吲哚菁绿(indocyanine green,ICG)和RG108的纳米材料ICG/RG108@BSA。吲哚菁绿在近红外激光诱导下可以活化Caspase-3蛋白,RG108通过抑制DNA甲基化来上调GSDME蛋白表达,从而增强了Caspase-3蛋白切割GSDME蛋白引起的膀胱癌细胞焦亡。ICG/RG108@BSA具有优异的生物相容性,能够被膀胱癌细胞有效吞噬。ICG/RG108@BSA在755 nm激光激活下,会对膀胱癌细胞产生明显的杀伤效果,其中小鼠膀胱癌细胞Mb49的存活率仅为6.9%,人膀胱移行细胞癌细胞T24的存活率仅为10.7%。同时755 nm激光激发的ICG/RG108@BSA材料也成功诱导了膀胱癌细胞焦亡,为膀胱癌的肿瘤免疫治疗提供了有利的条件。
吲哚菁绿 膀胱癌 去甲基化 细胞焦亡 indocyanine green bladder cancer demethylation pyroptosis 
光学仪器
2024, 46(1): 15
作者单位
摘要
西安交通大学生命科学与技术学院,生物医学光子学与传感研究所,生物医学信息工程教育部重点实验室,陕西 西安 710049
结肠癌已成为我国主要癌症发病种类之一,传统的治疗方法难以抑制其转移和复发。免疫疗法虽然可以通过机体免疫系统清除肿瘤组织,但肿瘤组织中的免疫抑制微环境,往往会导致效果不及预期。光学疗法,包括光热疗法(PTT)和光动力疗法(PDT),不仅可以直接诱导肿瘤细胞凋亡和坏死,还能改善肿瘤组织中的免疫抑制环境,从而促进免疫细胞在肿瘤组织中的浸润和活性,提高免疫治疗效果。笔者创新性地利用吲哚氰绿(ICG)介导的光学疗法和天然免疫活性分子羽扇豆醇(Lupeol)对自然杀伤(NK)细胞免疫活性的提升作用实现光-免疫协同激活作用和抗肿瘤效果,通过纳米脂质体将ICG和羽扇豆醇整合得到Lip-Lupeol & ICG,并将其用于结肠癌细胞灭活研究。结果显示:Lip-Lupeol & ICG在通过两次间隔激光照射后可实现PTT和PDT的两次治疗作用,可将结肠癌细胞活性抑制至43.4%;与此同时,包裹的羽扇豆醇释放后可与光学疗法协同激活NK细胞活性,将结肠癌细胞活性进一步抑制至16.7%,为临床结肠癌治疗提供了一种新思路。
医用光学 吲哚氰绿 羽扇豆醇 光动力疗法 光热力疗法 NK细胞免疫疗法 
中国激光
2024, 51(3): 0307202
作者单位
摘要
沈阳仪表科学研究院有限公司,沈阳 110043
基于荧光内窥镜的实际应用确定陷波滤光片的技术指标,以光学薄膜理论为基础设计陷波滤光片结构,采用Essential Macleod软件辅助进行膜系设计,分析膜层敏感度,选择合适镀膜设备、工艺控制方法制备陷波滤光片。制备的滤光片通带透射率均值达到97%以上,截止背景达到OD6以上,透射波前畸变低于λ/4 @632.8 nm,满足医疗健康微创精准手术的应用需求。
荧光内窥镜 滤光片 陷波膜系 近红外荧光 吲哚菁绿 Fluorescent endoscopes Filter Notch film Near-infrared fluorescence Indocyanine green 
光子学报
2024, 53(1): 0131001
姚春晖 1,2张洋 2刘斌 3张持健 1[ ... ]王贻坤 2,**
作者单位
摘要
1 安徽师范大学物理与电子信息学院,安徽 芜湖 241000
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所,安徽省医用光学诊疗技术与装备工程实验室,安徽 合肥 230026
3 安徽医科大学第一附属医院,安徽 合肥 230022
4 安徽医科大学生物医学工程学院,安徽 合肥 230009
5 安徽大学物质科学与信息技术研究院,安徽 合肥 230601
基于近红外自体荧光技术,设计一种甲状旁腺快速识别系统,该系统对术中快速识别甲状旁腺具有重要价值。设计一种环形可调激发光源和高精度可调LED恒流源,利用近红外光源激发组织荧光同时通过高灵敏度CMOS相机采集组织自体荧光信息,并对采集的荧光图像进行图像处理,从而准确识别甲状旁腺。利用梯度浓度吲哚菁绿(ICG)溶液模拟组织荧光,实验测得荧光强度与ICG浓度成正相关,信噪比与信背比均符合术中辨别需求,验证了本系统应用于不同荧光强度时的灵敏性与准确性。采用本系统对组织仿体进行测试,荧光仿体能够与背景明显区分开。对甲状旁腺及周边组织进行测试,甲状旁腺呈绿色,与周边组织明显区分,初步验证了本系统可用于对甲状旁腺的识别检测。
甲状旁腺 近红外自体荧光成像 吲哚菁绿 仿体 图像增强 
激光与光电子学进展
2023, 60(6): 0617003
作者单位
摘要
1 中国科学技术大学精密机械与精密仪器系,安徽 合肥 230027
2 中国科学技术大学苏州高等研究院,江苏 苏州 215123
荧光成像仪器的成像性能测试对于提高仪器的性能和临床转化成功率具有重要意义,成像性能测试的标准化需要一种可以精确模拟荧光光谱的长期稳定的样品作为测试工具。本团队提出了一种荧光发光模拟系统,该系统可以模拟荧光样品的激发效率、荧光发射谱特性和荧光空间分布特性,可以替代真实的荧光剂仿体对荧光成像类仪器进行量化表征。该系统采用的是基于线性滤光片和液晶显示器的光谱模拟方法。本团队还设计了一种改进的最小二乘光谱拟合算法,该算法可以自动模拟任意荧光发射谱。使用该系统模拟了近红外荧光造影剂吲哚菁绿(ICG)的发光特性,并对不同荧光成像仪器的成像灵敏度进行了测试。实验结果表明,所设计的荧光发光模拟系统可以稳定精准地模拟荧光样品的发光特性。
光谱学 荧光发光模拟 光谱拟合 近红外荧光成像 成像性能测试 吲哚菁绿 
中国激光
2022, 49(24): 2407204
程楠 2张丽敏 1,3,*赵志超 1潘英雪 1[ ... ]高峰 1,3
作者单位
摘要
1 天津大学 精密仪器与光电子工程学院, 天津 300072
2 天津大学 国际工程师学院, 天津 300072
3 天津市生物医学检测技术与仪器重点实验室,天津 300072
4 成都医学院 大健康与智能工程学院,成都 610500
针对目前常用的扩展卡尔曼滤波技术由于舍弃了系统方程求导的高阶项,使得荧光剂药代动力学参数重建精度下降的缺点,研究发展了基于二室模型的二阶自适应扩展卡尔曼滤波技术并引入无迹卡尔曼滤波技术用于荧光剂药代动力学参数重建。通过数值模拟和在体实验对基于一阶自适应扩展卡尔曼滤波、二阶自适应扩展卡尔曼滤波和无迹卡尔曼滤波的三种方法进行对比和评估,结果均表明,基于一阶和二阶自适应扩展卡尔曼滤波方法获取的荧光剂药代动力学参数重建结果相近,而基于无迹卡尔曼滤波方法获取的参数在量化度和对比度噪声比上均具有明显优势。该结果与无迹卡尔曼滤波由于没有忽略高阶项而具有更高精度相一致,证明了所提方法的可行性和有效性。
光学成像 扩散荧光层析 荧光剂药代动力学层析 吲哚菁绿 二室模型 扩展卡尔曼滤波 无迹卡尔曼滤波 Optical imaging Diffuse fluorescence tomography Fluorescence pharmacokinetic tomography Indocyanine green Two-compartmental model Extended Kalman filter Unscented Kalman filter 
光子学报
2021, 50(12): 1217001
葛浩然 1,2王方原 1,2李桂琴 3叶松 1,2[ ... ]王新强 1,2,*
作者单位
摘要
1 桂林电子科技大学电子工程与自动化学院, 广西 桂林 541004
2 广西光电信息处理重点实验室, 广西 桂林 541004
3 清华大学物理系, 北京 100084
废弃的药物化合物处理不当最终会进入环境成为污染物, 存在于天然水饮用水和城市废水中。 医院污水中含有低浓度的药物, 当这些药物进入环境会成为污染物, 进而严重污染自然生态系统。 吲哚美辛一种广泛使用的非甾体抗炎药, 其不易溶于水, 使得污水中的药物降解成为一项挑战。 为研究在外电场(EEF)作用下, 吲哚美辛分子结构和光谱的变化, 选用密度泛函理论(DFT)以及6-31+G(d, p)基组, 沿Y轴(N15-C16)方向施以EEF(0~0.025 a.u.)并优化吲哚美辛分子的基态几何构型, 探究了分子总能量、 键长、 红外光谱(IR)、 偶极矩(DM)和HOMO-LUMO能隙。 结果显示, 无EEF时, 吲哚美辛分子中C2与C17间的单键优化成了苯环间的双键, 就使得C16与C17的π电子还有N15的孤立电子与苯环形成牢固的共轭体系, 使吲哚美辛分子能量降到最低, 形成最稳定的构型。 DM随着EEF的增强缓慢增加, 当F≥0.015a.u.时增速变大, 基态总能量的变化则与此相反。 随着EEF的增强, 各个键长的伸缩变化不同。 C3-C4, C3-N15, C5-C6, O10-C11和N15-C16的键被拉长, 尤其是O10-C11, C3-N15和N15-C16键长变化剧烈, 最易断裂进而使吲哚美辛分解。 当EEF变大, 能隙不断降低, 表明在EEF下吲哚美辛分子的电子易过渡到高能级, 使分子处于激发态。 吲哚美辛分子中不同化学键的振动产生的IR, 相应地出现了不同的频谱移动, 这主要与能级有关, 能级差减小, 频率减小, 导致红移(RS), 反之则产生蓝移(BS); C16-C18与N15-C40键长变化ΔR与频移变化Δf的对应关系表明频谱移动还与分子轨道配置和偶极矩的变化等因素有关。 较强的4, 5, 6, 7吸收峰发生RS且振动强度增强, 说明对应的化学键变得脆弱进而断裂。 这些现象皆说明吲哚美辛分子随着EEF的增强, 变得不稳定, 易发生解离。 分析EEF下物质的分子结构和IR, 可以电场解离方法研究降解吲哚美辛, 以便为污水中的顽固药物降解提供理论指导。
吲哚美辛 药物降解 外电场(EEF) 分子结构 红外光谱(IR) Indomethacin Drug degradation External electric field(EEF) Molecular structure Infrared spectrum 
光谱学与光谱分析
2020, 40(8): 2447
作者单位
摘要
1 天津大学精密仪器与光电子工程学院, 天津 300072
2 天津市生物医学检测技术与仪器重点实验室, 天津 300072
3 天津医科大学肿瘤医院, 天津 300060
基于动态扩散荧光层析成像(DFT)的荧光剂药代动力学参数(渗透率等),可为判断不同生物组织体的生理过程和病理信息提供参考。自适应扩展卡尔曼滤波(AEKF)作为一种动态分析方法,具有精确的建模和多参数在线估计等优势。基于DFT系统对吲哚菁绿(ICG)在健康小鼠肝脏和荷瘤小鼠皮下移植瘤组织中的代谢过程进行了测量,然后采用DFT重建技术获得了ICG的时间序列荧光层析图像,在此基础上结合二室模型和AEKF方法得到了ICG的时间序列渗透率参数层析图像。对比两种实验结果可知,肿瘤中ICG的渗透率参数Kpe、Kep均较健康小鼠肝脏中的小。时间序列荧光层析图像显示,AEKF方法能有效获得复杂生物体实时、稳定的ICG药代动力学参数。
医用光学 自适应扩展卡尔曼滤波 药代动力学 扩散荧光层析成像 吲哚菁绿 渗透率参数 
中国激光
2020, 47(9): 0907002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!