作者单位
摘要
中国科学院 长春光学精密机械与物理研究所,吉林长春
在轨运行载荷的性能不可避免地出现衰减,场地定标是一些卫星载荷在轨辐射定标主要手段之一,其精度主要取决于地表反射率的准确程度。本文介绍了地表反射率自动观测系统原理和系统组成,并在敦煌辐射校正场实现无人执守自动化、无间断的地表光谱反射率测量,采用标准白板法和辐照度法两种方法同步观测,对两种方法获取的地表反射率数据分别进行了短期和长期稳定性的对比分析,地表反射率可直接溯源至标准白板反射率,减少了定标传递环节。结果表明:标准白板法测量地表反射率短期均值偏差为0.130%,长期测量350~600 nm波段均值偏差为4.996%,600~2 500 nm波段均值偏差为2.104%。标准白板法测量地表反射率合理可行,测量曲线连续、平滑、抖动少,可通过定期清洁标准白板提高测量准确性。辐照度法短期测量与标准白板法具有相近的性能,350~1 900 nm波段均值偏差为0.236%,1 900~2 500 nm波段均值偏差为0.443%。长期测量地表反射率整体漂移小,平均漂移为0.735%,但存在反射率曲线局部噪声大的缺点。可将两种方法相结合,获得更为准确的地表反射率数据。
标准白板法 辐照度法 地表反射率 自动观测系统 场地定标 standard whiteboard method irradiance method surface reflectance automatic observation system field calibration 
光学 精密工程
2023, 31(16): 2319
陈善静 1,2,5张文娟 3,*张兵 3,4康青 5徐旭 5
作者单位
摘要
1 中国科学院 空天信息创新研究院,数字地球重点实验室,北京00094
2 可持续发展大数据国际研究中心,北京100094
3 中国科学院 空天信息创新研究院,北京100094
4 中国科学院大学,北京10009
5 陆军勤务学院,重庆401311
青藏高原地表反射率在自然资源监测、生态环境保护和地球科学研究等方面有着重要应用。MOD09A1反射率数据由于云等因素的影响产生了大量异常像元,使得数据存在信息损失不完整的问题。考虑到邻近时序遥感影像具有高相关性,同类地物光谱具备高相似性,本文针对青藏高原地区提出了一种基于残缺多时相数据与地表覆盖分类信息的地表反射率深度学习重建方法。首先,以多时相MOD09A1反射率数据和MCD12Q1地表覆盖分类数据为基础,通过异常像元去除、有效图层提取、投影转换与拼接,得到目标区域基础反射率图像及辅助数据;其次,根据残差网络基本原理,构建了基于多时相数据与地表覆盖分类信息融合的深度学习网络模型;然后,利用MOD09A1数据完整区域裁剪的云掩膜样本、基于地表覆盖分类和K-means聚类算法生成的增广样本对模型进行训练;最后,将训练好的模型用于缺失数据区域地表反射率重建。通过两组对比试验表明,本文方法降低了对多时相辅助影像数据量和完整性的要求,在多时相数据残缺情况下,结合地表覆盖分类信息可实现对青藏高原大范围地表反射率的修复与重建。
地表反射率 青藏高原 深度学习 MODIS数据 缺失数据重建 surface reflectance Tibetan Plateau deep learning MODIS data reconstruction of missing data 
光学 精密工程
2023, 31(4): 429
黄冬 1,2,3李新 1,2,*张艳娜 1,2韦玮 1,2张权 1,2
作者单位
摘要
1 中国科学院合肥物质科学研究院 安徽光学精密机械研究所安徽,合肥 230031
2 中国科学院通用光学定标与表征重点实验室,合肥 230031
3 中国科学技术大学,合肥 230026
针对实验室定标周期长、长途运输影响定标精度等问题,开展了通道式辐射计ATR的现场定标方法研究。在SRBC现场定标中引入超光谱辐照度仪自动观测数据来计算天空漫射照度,利用SRBC法计算了定标系数和地表反射率,将其与人工利用ASD型光谱仪测量的地表反射率进行对比,并对地表反射率计算的不确定度进行分析。研究结果表明,SRBC法定标系数计算的ATR反射率与ASD型光谱仪测量的相对偏差优于1.4%,反射率计算不确定度优于2.78%~4.35%,SRBC法在实际应用中具有较高的精度和系统优势。将SRBC定标系数应用于卫星自动化替代定标,近3年的自动化替代定标结果与AQUA/MODIS星上定标系数具有很好的一致性,各通道单次定标相对偏差基本在5%以内,平均百分偏差优于3.58%,能很好监测跟踪卫星载荷的运行情况,验证了SRBC法的有效性和适用性。
对地辐射计 地表反射率 辐射计定标 自动化替代定标 气溶胶光学厚度 臭氧 Ground radiometer Surface reflectance Radiometer calibration Automatic vicarious calibration Aerosol optical depth Ozone content 
光子学报
2022, 51(12): 1212004
作者单位
摘要
1 临沂大学资源环境学院(山东省水土保持与环境保育研究所), 山东 临沂 276000
2 华东师范大学地理科学学院, 崇明生态研究院, 地理信息科学教育部重点实验室, 上海 200241
目前, 无人机获取的多光谱遥感数据已被广泛应用于农业、 林业、 环境等领域的定量监测中。 然而, 现有的将多光谱遥感数据转换为地表反射率的方法, 仍然存在一定的缺陷, 如需要依赖地面参考板、 无法适应光照条件变化、 得到的结果不准确等, 从而影响了多光谱遥感数据定量化应用的效果。 为了解决该问题, 提出了一种可以利用无人机搭载的多光谱相机, 直接对地表反射率进行测量的新方法。 该方法具有非常强的适应能力, 即使在环境光照强度变化的条件下, 仍然能够得到准确的地表反射率。 其中, 如何利用倾斜状态下的光强传感器获取准确的太阳辐照度, 是需要解决的关键问题。 对此, 提出了一种利用两个或者更多朝向不同方向的光强传感器, 实现太阳直射和散射辐照度测量的新方法。 利用此方法即可将相机记录的数字量化(DN)值直接转换为地表反射率。 为了验证本方法的实际效果, 设计了具体的实验验证方案, 对不同日期不同光照条件下获取的无人机遥感数据进行验证。 实际测试结果表明: 利用该方法, 得到黑、 灰、 白三张参考板的反射率在5个多光谱(蓝、 绿、 红、 红边和近红外)波段中最大的平均绝对误差为3.34%, 其对应的标准差为2.11%; 三张参考板在所有波段中最大的平均绝对误差为2.94%, 其对应的标准差为1.84%。 由此可见, 在光照强度变化的条件下, 利用该方法实现地表反射率的准确测量是可行性的。 该方法极大地简化了无人机遥感数据转换为地表反射率的过程。 对多光谱无人机的设计, 以及无人机遥感数据的定量化应用, 都具有重要的参考价值。
无人机遥感 多光谱相机 地表反射率 辐射校正 太阳辐照度 UAV-based remote sensing Multispectral camera Land surface reflectance Radiometric calibration Solar irradiance 
光谱学与光谱分析
2022, 42(5): 1581
孙晗 1潘军 1高海亮 2,*姜鹏 1[ ... ]韩启金 4
作者单位
摘要
1 吉林大学地球探测科学与技术学院,吉林 长春 130012
2 中国科学院空天信息创新研究院,北京 100094
3 中国气象局国家卫星气象中心,北京 100081
4 中国资源卫星应用中心,北京 100094
敦煌国家辐射校正场每年都开展大量实验,为国内外对地观测卫星提供定标服务,但多年来敦煌场进行像元尺度地表反射率获取工作时,有关地面光谱采样方案准确度的研究较少。为定量评估不同地面采样方法的准确度,确定不同像元尺度地表反射率获取时采样点的最佳位置,实现敦煌场高精度高效率业务化测量,利用敦煌高分辨率无人机数据与GF-1卫星2 m全色数据对不同像元尺度地表反射率采样方法准确度进行定量分析。研究结果表明:获取陆地卫星像元尺度地表反射率,建议在敦煌150 m国家场的位置用5点系统采样方案初步标定2 m样方位置,并用光谱仪在各2 m样方内用5点系统采样法进行测量;对于气象卫星像元尺度,建议在新选3 km场地用5点模拟退火采样方案确定2 m样方位置,并用光谱仪在各2 m样方内用5点系统采样法进行测量。
遥感 敦煌辐射校正场 像元尺度 地表反射率 采样方法 采样准确度 
激光与光电子学进展
2022, 59(10): 1028009
丁毅 1,2,3罗海燕 1,2,3,*李志伟 1,3施海亮 1,2,3[ ... ]熊伟 1,2,3
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
时空联合调制型空间外差干涉成像光谱仪(TS-SHIS)在对目标推扫成像过程中,指向镜推扫误差、指向镜定位误差或卫星运动平台振动等会引起目标对应像点(x',y')偏离理想位置(x,y),导致其与相邻的若干空间分辨单元之间存在光谱掺杂现象,进而影响干涉数据重构及复原光谱精度。基于TS-SHIS机理,针对运动误差引起的目标光谱线性混叠、不同程度的地表反射率差异对复原光谱精度的影响等问题进行了分析;建立了以相邻目标掺杂比、地表反射率差异为变量的混合目标干涉函数关系。依据MODIS卫星载荷观测数据,对中国地区不同空间分辨率地表反射率差异进行了分析;以相对光谱二次误差为评价函数,讨论了典型高轨平台姿态参数对不同空间分辨率目标复原光谱精度的影响,该研究为下一代高轨、高时空分辨温室气体探测技术提供技术基础。
测量 时空联合调制 空间外差干涉成像光谱仪 运动误差 地表反射率差异 相对光谱二次误差 
光学学报
2022, 42(5): 0512007
作者单位
摘要
国家卫星气象中心, 北京 100081
选取中国西北地区10个典型的用于辐射定标及仪器性能追踪的辐射定标场,在卫星过境时利用地面手持光谱仪和低空无人机(UAV)同步观测反射率光谱,系统比较了多个场地的反射率光谱差异,并开展了多个场地的光谱特征分析和参数建模研究。同一个场地一天内不同时间的光谱形状变化很小,光谱角小于5°,光谱幅度的变化主要受太阳天顶角和大气状况的影响,光谱幅度在不同天的同一时刻变化很小。不同场地的光谱形状和幅度差异较大。同一场地不同观测尺度下的光谱曲线基本吻合。通过分析发现,当波长小于1100 nm时,所有沙漠场的光谱曲线形状与三角反正切函数曲线相似。基于反正切函数进行地表反射率光谱建模,各场地实测光谱与模拟光谱的均方根误差均在0.6%以内,相关系数均在0.99以上,表明四参数光谱模型能够准确地描述沙漠场的反射率光谱。用模型计算的地表反射率替代场地实测的地表反射率进行FY-3D中分辨率光谱成像仪(MERSI)场地定标,可以发现,与基于实测光谱计算的结果相比,利用该模型得到的MERSI各个波段的相对偏差小于3%,表明构建的沙漠四参数反射率光谱模型可以很好地应用在MERSI的定标中。
遥感 地表反射率光谱 沙漠定标场网 反正切函数 光谱建模 
光学学报
2022, 42(6): 0628003
王新强 1,2梁秋裕 1,2叶松 1,2王方原 1,2[ ... ]甘永莹 1,2,*
作者单位
摘要
1 桂林电子科技大学电子工程与自动化学院,广西 桂林 541004
2 广西光电信息处理重点实验室,广西 桂林 541004

二氧化碳(CO2)是造成温室效应的气体之一,其浓度的空间分布对气候预测和人类生产、生活的影响不可忽视,实现CO2浓度的准确反演有利于掌控全球CO2时空分布。但是在近红外波段,地表反射率的不确定对CO2浓度反演存在影响。引入比值法对卫星对地辐射光谱进行处理,验证吸收波段辐亮度比值与CO2浓度之间存在某种关系,该关系反演CO2浓度具有可行性。以MODTRAN4仿真的辐亮度光谱为数据源,选取4个特征吸收峰的光谱辐亮度比值与CO2浓度进行分析。结果显示,光谱辐亮度比值与CO2浓度存在近似线性关系,而且在6310 cm-1处的线性关系更为明显,误差仅有1.15%。然后通过设置不同的大气模式和气溶胶模式,进一步对辐亮度比值与浓度之比进行剖析,结果表明,在0.1~0.9反射率区间,两者呈高度相关,相关系数高达0.98,平均误差不超过2%。最后对实测数据进行相同处理,与仿真数据进行了对比。在4个波段的拟合中,6334 cm-1处拟合效果最好,线性关系达到了0.99,从另一方面说明了光谱辐亮度比值与CO2浓度存在线性关系,这种关系可以很好地应用于CO2浓度的反演,近似消除地表反射率影响。

大气光学 二氧化碳浓度反演 地表反射率 比值法 MODTRAN4 
激光与光电子学进展
2022, 59(1): 0101001
作者单位
摘要
1 中国科学院空天信息创新研究院, 国家环境保护卫星遥感重点实验室, 北京 100101
2 中国科学院大学, 北京 100049
3 宁夏大学资源环境学院, 宁夏 银川 750021
高分四号 (GF-4) 是我国第一颗高分辨率对地静止卫星, 地表反射率产品对于评估生态环境与减灾防灾具有重要价值。GF-4 大气校正算法对地表反射率进行估计, 迭代计算观测与计算表观反射率残差最小值得到气溶胶光学厚度, 并构建 6SV 查找表对地表反射率结果进行计算。在精度验证基础上, 考虑产品生产的高效率需求, 对计算复杂度高的步骤基于图形处理器 (GPU) 进行内核设计, 实现线程、寄存器等性能优化。研究结果表明, 基于 GPU 加速的大气校正算法在性能与能耗上具有较大优势, 一景 GF-4 PMS 的 10240×10240 像元数的影像数据, 相比顺序执行取得 57.3 的总体加速比, 而总体能耗仅为顺序执行的 15.5%。
高分四号 图形处理器 大气校正 地表反射率 气溶胶光学厚度 GF-4 graphics processing unit atmospheric correction surface reflectance aerosol optical depth 
大气与环境光学学报
2021, 16(3): 269
杜沈达 1,2,3张运杰 1,3,*韦玮 1,3黄冬 1,2,3[ ... ]郑小兵 1,3
作者单位
摘要
1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 安徽 合肥 230031
2 中国科学技术大学, 安徽 合肥 230026
3 中国科学院通用光学定标与表征技术重点实验室, 安徽 合肥 230031
为了满足星上载荷高频次的在轨定标需求,常使用场地自动化定标技术将多光谱反射率反演为高光谱反射率,所以提升光谱的反演精度对提高自动化定标精度尤为重要。使用布设在敦煌辐射校正场的通道式自动化观测仪器计算从2018年9月至2019年9月的反射率;根据测量过程中太阳天顶角的不同将数据分为6组,并使用双向反射分布函数模型对不同太阳天顶角下的光谱形状进行一致性分析。实验结果表明,双向反射分布函数模型校正不同入射角度是有效的。
散射 自动化观测 太阳天顶角 地表反射率 相似度 光谱反演 双向分布函数 
光学学报
2021, 41(2): 0229001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!