作者单位
摘要
深圳信息职业技术学院 信息与通信学院, 广东 深圳  518172
温度是表征物理化学性质的最基本参数之一,精确的温度测量对于现代科学技术发展起着至关重要的作用。传统基于稀土离子热耦合能级对(TCLs)能量传递的荧光温度传感器因TCLs之间能量差的限制存在测温灵敏度低及信号区分困难等问题。为寻求更优的解决方案,本研究探索了氧空位缺陷发光在荧光温度传感器领域的应用前景。本文通过高温固相法合成了BaMgSiO4陶瓷,由于在高温烧结过程中有少量Ba2+和Mg2+蒸发,陶瓷中会产生氧空位以保持材料电中性。这些氧空位所形成的缺陷能级在332 nm紫外光激发下,发射出372,400,527 nm三种波长的发射光。这三种发射光强度对温度有着不同的敏感性,使得其能够良好应用于荧光温度传感领域。其中,I372I527组成的温度传感系统相对测温灵敏度在298 K时为2.90%·K-1,高于传统TCLs荧光温度传感器的测温灵敏度,突破了TCLs温度传感器的灵敏度天花板。另外,由于372 nm和527 nm波长相差较大,使得BaMgSiO4陶瓷有着室温下绿光发射到458 K高温下蓝光发射的显著变化,实现了温度监控可视化。因此,BaMgSiO4陶瓷因其独特的氧空位缺陷发光特性,为开发荧光温度传感器提供了一种高精度和可视化的新选择,为荧光温度探测技术提供了一条新思路。
空位缺陷发光 荧光温度传感材料 能量传递 可视化 luminescence from oxygen vacancy defects fluorescence temperature sensors energy transfer visualization 
发光学报
2024, 45(2): 308
作者单位
摘要
吉林大学 电子科学与工程学院, 集成光电子学国家重点联合实验室, 吉林 长春  130012
采用金属有机化学气相沉积(MOCVD)工艺在p-GaAs(100)衬底上外延了Ga2O3薄膜并制备了n-Ga2O3/p-GaAs异质结日盲紫外探测器。通过X射线衍射仪、原子力显微镜、场发射扫描电子显微镜等方法对Ga2O3薄膜表面形貌、晶体质量进行了测试与分析。结果表明,Ga2O3薄膜呈单一晶向,薄膜表面平整且为Volmer-Weber模式外延。测试表明,n-Ga2O3/p-GaAs异质结探测器具有明显的整流特性。器件在5 V反向偏压和紫外光(254 nm)照射下实现了超过3.0×104的光暗电流比、7.0 A/W的响应度、3412%的外量子效率、4.6×1013 Jones的探测率。我们利用TCAD软件对器件结构进行仿真,得到了器件内的电场分布和能带结构,并分析了器件的工作原理。该异质结探测器性能较好,制造工艺简单,为Ga2O3超灵敏日盲紫外探测器的研制提供了新途径。
化镓 金属有机化学气相沉积 异质结 日盲紫外探测器 Ga2O3 metal-organic chemical vapor deposition(MOCVD) heterojunction solar-blind UV photodetectors 
发光学报
2024, 45(3): 476
作者单位
摘要
1 中国科学院电工研究所 应用超导重点实验室,北京 100190
2 西北核技术研究所 先进高功率微波技术重点实验室,西安 710024
为了利于高功率微波系统的紧凑化和小型化,降低系统能耗,对产生引导磁场的超导磁体系统进行了研究设计。超导磁体使用稀土钡铜氧化物线饼组成。低温系统采用4台小型风冷式斯特林制冷机对超导磁体冷却。为了适用于车载环境并降低漏热,采用了一种非金属材料的新型锥体结构作为磁体的承载结构,并通过仿真分析了一般的车载环境下的磁体结构承载情况。整个高温超导磁体工作温区为40~50 K,达到目标场时的通电电流为77.49 A,均匀区场强达到4 T。整个系统能耗较传统技术降低80%。通过实验测试出高温超导磁体的温度运行上限为48.9 K。
高功率微波 稀土钡铜材料高温超导磁体 传导冷却 车载 high power microwave rare earth barium copper oxide high-temperature superconducting magnet conduction-cooled vehicle environments 
强激光与粒子束
2024, 36(1): 013013
作者单位
摘要
1 南京工业大学 机械与动力工程学院,南京 211816
2 南京工业大学 电气工程与控制科学学院,南京 211816
过度使用抗生素导致的水污染,对自然环境和人类健康造成了重大威胁。低温等离子体作为一种绿色环保的高级氧化技术,被认为是一种最具前景的抗生素降解方法之一,然而在降解效率和能量效率方面还有待进一步提高。利用纳秒脉冲放电激励针-水结构气液放电,获得了一种能产生高活性等离子体的瞬态火花模式放电,并应用于水中四环素降解,研究了脉冲电压、频率、初始浓度、初始pH值等参数对四环素降解的影响,结果表明初始浓度50 mg/L,脉冲电压9 kV、频率2 kHz,初始pH值为中性的条件下四环素的降解率最高,处理时间10 min时降解率达到了91.6%,能量效率和每阶电能分别为0.165 g·kW−1·h−1和0.78 kW·h·m−3。自由基淬灭实验表明羟基自由基 (·OH) 在四环素降解过程中起主要作用,而H2O2和O3的作用稍弱。细胞毒性实验也表明气液放电处理10 min后的溶液毒性显著下降。
低温等离子体 气液放电 四环素抗生素 抗生素降解 活性物种 non-thermal plasma gas-liquid discharge tetracycline antibiotics antibiotic degradation reactive oxygen species 
强激光与粒子束
2024, 36(3): 035001
作者单位
摘要
南京邮电大学电子与光学工程学院,柔性电子(未来技术)学院,江苏 南京 210023
提出并实现了一种基于聚二甲基硅氧烷(PDMS)增敏空芯微瓶谐振腔(PS-HCMR)的高灵敏温度传感器。采用提拉镀膜法在高Q值(~7.83×107)PS-HCMR表面均匀涂敷一层PDMS薄膜以实现热敏功能化,基于PS-HCMR回音壁模共振谱的热敏感性以及PDMS的高热光效应和热膨胀效应,实现了对温度信号的高灵敏度感知与测量。实验结果表明:当膜层厚度为150 μm时,温度灵敏度可达0.127 nm·℃-1,相比于纯SiO2 HCMR提高了32倍。所提出的PS-HCMR的温度传感器具有灵敏度高、制备简单、结构紧凑等优势,在工业化控制、电力系统、环境监测等领域中具有良好的应用前景。
传感器 微腔 聚二甲基硅 增敏空芯微瓶谐振腔 回音壁模式 热光效应 温度灵敏度 
中国激光
2024, 51(5): 0510003
吕超林 1,*†尤立星 1,2,**†覃俭 1徐光照 1[ ... ]史经浩 1
作者单位
摘要
1 赋同量子科技(浙江)有限公司,浙江 嘉兴 314100
2 集成电路材料全国重点实验室,中国科学院上海微系统与信息技术研究所,上海 200050
自2001年被发明以来,超导纳米线单光子探测器(SNSPD)迅速成长为近红外波段的明星光子探测器,其在近红外波段如1550 nm处系统探测效率超过95%,暗计数率低于1 cps(counts per second),时间抖动优于10 ps,探测速率高于1 GHz,并广泛应用在量子信息领域。近年来,研究人员开始将SNSPD引入到生物领域,以替代在近红外波段具有低信噪比、多后脉冲的半导体单光子探测器。本文将介绍SNSPD的探测原理和性能指标,并系统地阐述SNSPD在生物领域中的应用现状和发展前景。
超导纳米线单光子探测器 共聚焦显微镜 单线态检测 漫反射光谱 荧光寿命成像 
激光与光电子学进展
2024, 61(1): 0104002
作者单位
摘要
1 浙江大学光电信息科学与工程学院,浙江 杭州 310027
2 浙江省医疗器械审评中心,浙江 杭州 310009
3 之江实验室类人感知研究中心,浙江 杭州 311100
采用蒙特卡罗模拟技术对血管组织在可见光波段的多光谱成像进行建模仿真,通过分析不同血氧饱和度下血液后向散射功率的绝对值、相对值、绝对差值和对比度,并考虑可能的干扰因素,优选出适合内窥环境下使用的450 nm、525 nm、630 nm和660 nm 4个成像波段。基于4个优选的成像波段展开了血氧饱和度检测的实验验证。在血管仿体组织上的实验结果表明,在95%的置信水平下,血氧饱和度的检测偏差为1.24%。研究结果验证了利用四波段进行内窥组织血氧饱和度检测的可行性。
医用光学 多光谱成像 内窥镜 饱和度 蒙特卡罗仿真 
光学学报
2024, 44(2): 0217001
作者单位
摘要
1 闽江学院 物理与电子信息工程学院, 福建 福州  350108
2 重庆邮电大学 光电工程学院, 重庆  400065
近红外光探测能力强的光电探测器更有利于检测人体心率,而且探测范围覆盖红光与近红外光的宽带响应光电探测器能用于检测血氧饱和度,因此提升宽带响应光电探测器的红光与近红外光探测能力具有重要意义。然而,经典的二元体异质结宽带响应倍增型有机光电探测器通常由于活性层中给体/受体比例差异较大,导致器件对红光与近红外光的响应能力较弱甚至没有响应。本文通过用少量给体材料PCE10替代活性层P3HT∶IEICO?4F(100∶1)中部分P3HT的方法,制备了结构为ITO/PEDOT∶PSS/P3HT∶PCE10∶IEICO?4F(90∶10∶1)/Al的体异质结三元倍增型有机光电探测器。-20 V偏压下,三元器件获得紫外到近红外(330~810 nm)响应较均匀的EQE光谱,并且器件在660 nm和810 nm处的EQEs(134000%和147000%)是相同条件下二元器件的78倍和106倍,相应的探测灵敏度(5.4×1013 Jones和7.27×1013 Jones)分别提升了26倍和36倍。三元器件的红光和近红外光探测能力得到显著提升,为制备用于人体心率与血氧饱和度检测的高性能光电探测器提供了策略。
近红外 心率 饱和度 体异质结 倍增型有机光电探测器 三元 near-infrared heart rate blood oxygen saturation bulk-heterojunction photomultiplication-type organic photodetector ternary 
发光学报
2023, 44(12): 2222
江润璐 1吴鑫 1郭昊骋 1郑琦 1,*[ ... ]江莞 1,2
作者单位
摘要
1 1.东华大学 1. 材料科学与工程学院, 纤维改性国家重点实验室
2 2.功能材料研究中心, 上海 201620
热电材料能够实现热能与电能之间直接转换, 在绿色制冷、废热回收等领域具有广阔的应用前景。目前, 对热电材料的研究主要集中在无机半导体材料和导电高分子材料上, 虽然取得了很大进展, 但探索其它新型热电材料仍具有重要意义。金属-有机框架(Metal-Organic frameworks, MOFs)是一种由有机配体和金属离子或团簇通过配位键形成的晶态多孔材料, 具有独特的多孔结构以及组分结构可调等优势, 在一定程度上可以满足“电子晶体-声子玻璃”的要求。本研究采用导电客体分子促进电荷传输的策略, 将导电高分子聚3,4-乙烯二氧噻吩(PEDOT)原位聚合到锆基MOFs材料UiO-67中, 利用MOFs的有序孔道对PEDOT分子链的限域作用, 提升复合材料的电子传导能力。制备得到的PEDOT/UiO-67的电学性能研究表明, 该复合材料室温电导率最高可达5.96×10−3 S·cm−1, 比PEDOT高出1个数量级。同时, 该材料具有热电性能响应, 室温功率因子(Power Factor, PF)最高可达3.67×10−2 nW·m−1·K−2。本工作以MOF的有序孔道为反应平台, 通过简单的原位聚合合成方法构建了导电聚合物/ MOFs导电材料, 为进一步开发MOFs基热电材料提供了参考。
金属-有机框架 聚3,4-乙烯二噻吩(PEDOT) 电子传输 热电性能 metal-organic framework poly(3,4-ethyldioxythiophene) electrical conductivity thermoelectric property 
无机材料学报
2023, 38(11): 1338
作者单位
摘要
1 1.贵州梅岭电源有限公司 特种化学电源全国重点实验室, 遵义563003
2 2.南昌工学院 机械与车辆工程学院, 南昌 330108
氧还原反应(ORR)是燃料电池阴极重要的电化学反应过程, 其自发反应进程缓慢, 对氧还原反应起高效催化作用的催化剂面临价格昂贵、合成流程复杂、污染环境等问题, 因此探索合成简单、环境友好的氧还原催化剂制备方法具有重要意义。铁氮共掺杂介孔碳材料(Fe-N/MC)是一种有巨大应用价值的非贵金属氧还原反应催化剂。本工作通过在马弗炉中的半封闭体系内高温碳化小分子前驱体得到介孔碳材料(MCM), 再把获得的MCM与铁盐混合在管式炉中高温处理制备得到铁氮共掺杂介孔碳材料(Fe-N/MCMT)。该方法热解条件简单, 无需模板剂和NH3、HF等有毒物质。由于MCM含有较高的氮和氧元素, 有利于提升介孔碳材料表面的亲水性和配位能力, 通过MCM和铁盐制备出的Fe-N/MCMT含有丰富的、催化ORR的Fe-Nx活性位点, 其起始电位和半波电位分别为0.941和0.831 V (vs RHE), 比商业化Pt/C催化剂的起始电位和半波电位分别正34和16 mV。氧还原反应按照反应过程分为二电子过程和四电子过程, Fe-N/MCMT和Pt/C的转移电子数分别为3.77和3.91, 表明具有四电子反应过程。
铁氮共掺杂介孔碳 还原反应 半封闭体系 催化剂 iron-nitrogen co-doped mesoporous carbon oxygen reduction reaction semi-containment system catalyst 
无机材料学报
2023, 38(11): 1309

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!