王伟 1赵甜甜 1刘强 1,2,*韩邦成 3[ ... ]桑建 4
作者单位
摘要
1 北京石油化工学院 精密电磁装备与先进测量技术研究所,北京0267
2 天津工业大学 电子与信息工程学院,天津300387
3 北京航空航天大学 惯性技术重点实验室,北京100191
4 广州市鸿利光电股份有限公司,广东广州510890
对巨量转移(Mass Transfer, MT)方案和运动定位平台(Motion Positioning Platform, MPP)的研究现状及其未来发展进行了详细阐述。根据芯片转移方式,将MT方案分为精准拾取-释放技术、自组装技术、滚轴转印技术、激光剥离技术,结合芯片转移效率和良率,论述了国内外MT方案的发展过程。在此基础上,从平台支撑方式,详细介绍了机械构型、气浮构型、磁浮构型和混合构型的MPP结构及工作原理,考虑运动行程、运动定位精度等因素,比较了MPP性能的优劣。展望了MT方案和MPP技术的未来发展方向,指出基于微孔液气双态介质的激光剥离MT和具备周向小角度修正以及轴向微高度调节能力的“机械+磁浮”混合构型MPP是Mini/Micro LED芯片转移技术的研究重点。
Mini/Micro LED 巨量转移 运动定位平台 显示技术 转移良率 Mini/Micro LED Mass Transfer(MT) Motion Positioning Platform(MPP) display technique transfer yield 
光学 精密工程
2023, 31(2): 183
作者单位
摘要
昆明理工大学 机电工程学院, 云南 昆明 650500
为了提高压电微位移平台快速定位的精确度, 建立了一种表征压电微位移平台驱动电压与输出位移关系的定位模型。考虑压电工作台在快速、大行程精确定位过程中会受压电陶瓷迟滞特性及本身动态特性的影响, 本文采用Bouc-Wen模型描述压电陶瓷迟滞特性, 并结合压电工作台的动态特性进行共同建模, 使模型同时体现压电工作台的动态特性与迟滞特性。为了验证模型的正确性, 搭建了基于压电微位移平台和相关驱动器的实验设备对模型进行了实验验证, 并进行了测控程序的二次开发。研究结果表明, 与单纯的Bouc-Wen模型相比, 提出模型在最大位移输出为40 μm, 输入电压频率为40 Hz时的最大误差由3.04 μm下降到了0.67 μm, 此时最大相对误差为1.68%。得到的结果验证了提出的模型可较好地模拟压电工作台的迟滞特性与动态特性, 大大提高压电微位移平台在快速、大行程定位中的精确度。
压电微位移台 动态特性 迟滞特性 Bouc-Wen模型 运动定位 piezoelectric positioning stage dynamic characteristics hysteresis characteristics Bouc-Wen model dynamic position 
光学 精密工程
2016, 24(9): 2255
作者单位
摘要
1 山东大学 控制科学与工程学院,山东 济南 250061
2 泰山学院 物理与电子科学系,山东 泰安 271021
为实现压电微动工作台的快速准确运动定位,研究了其运动定位模型。压电工作台的运动定位精度主要受工作台动态特性和迟滞特性的影响,在介绍这两类典型特性模型及其适用范围的基础上,提出了能够同时体现压电工作台动态特性和迟滞特性的动态迟滞模型,并给出了采用Prandtl-Ishlinskii (PI)迟滞算子的动态迟滞模型参数辨识途径。以TRITOR100型压电工作台为例进行实验研究,结果表明:当压电工作台在30 μm的定位范围内以±900 V/s的输入电压速率进行快速运动定位时,动态迟滞模型的模型精度比以往常用的线性动态模型和迟滞模型有较大提高,其平均误差为0.16 μm,最大误差为0.38 μm,为高性能运动定位工作台控制系统的设计提供了模型基础。
压电微动工作台 运动定位 动态迟滞模型 PI迟滞模型 扫描探针显微镜 piezopositioning stage dynamic positioning dynamic hysteresis model PI hysteresis model scanning probe microscope 
光学 精密工程
2009, 17(3): 549

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!