作者单位
摘要
桂林电子科技大学 电子工程与自动化学院,桂林 541004
为拓展脉冲功率技术在超快诊断领域的发展和磁脉冲压缩技术的应用,基于磁性元件良好的开关性能和脉冲宽度压缩原理,采用具有多重压缩特性的级联磁开关,设计磁脉冲压缩电路,并将输出的皮秒选通脉冲应用于分幅相机时间分辨率研究。研究结果显示,磁脉冲压缩电路能产生适用于分幅相机的皮秒选通脉冲,当直流电源为500 V,磁开关电感量为1 μH,初级线圈回路充电电容为4 μF,变压器匝数比为10∶1,磁开关线圈匝数比为1∶2,复位电流为1 A,次级线圈回路和两级磁开关电路充电电容为1 pF时,获得幅值为-3.2 kV和半高宽为149 ps的选通脉冲,将其加载于采用蒙特卡洛法建立的微通道板通道内光电子动态倍增模型,通过计算随选通脉冲的时变增益和构建微通道板上的时间-增益曲线,可实现87 ps的分幅相机时间分辨率。研究结论可为应用于分幅相机的皮秒选通脉冲产生以及磁脉冲压缩电路的拓展应用提供新思路。
超快诊断设备 脉冲功率技术 分幅相机 磁脉冲压缩电路 蒙特卡洛法 皮秒选通脉冲 Ultrafast diagnostic device Pulse power techniques Framing camera Magnetic pulse compression circuit Monte Carlo method Picoseconds gating pulse 
光子学报
2023, 52(11): 1111005
作者单位
摘要
桂林电子科技大学 电子工程与自动化学院,桂林 541004
为获得高幅值和窄半高宽的选通脉冲,基于雪崩三极管Marx脉冲发生器和脉冲陡化技术,设计皮秒高压脉冲电路,对应用于分幅相机的选通脉冲展开研究,并采用蒙特卡洛法建立微通道板通道内的光电子动态倍增研究模型,通过将选通脉冲应用于微通道板增益计算获取时间分辨率。研究结果表明,基于Marx脉冲发生器和脉冲陡化技术相结合产生皮秒选通脉冲的方法是可行的,当Marx脉冲发生器为三级,脉冲陡化电路的两个电感和电容分别为725 nH、7 nH、1 pF时,可获得幅值-2.8 kV和半高宽124 ps的选通脉冲。将该选通脉冲加载于微通道板上进行光电子动态倍增过程研究,通过分析和统计微通道板增益,获得分幅相机的时间分辨率约为53 ps。
分幅相机 脉冲陡化技术 选通脉冲 蒙特卡洛法 时间分辨率 Framing camera Pulse steepening technique Gating pulse The method of Monte Carlo Temporal resolution 
光子学报
2023, 52(1): 0125001
作者单位
摘要
1 中国工程物理研究院 激光聚变研究中心,四川 绵阳 621900
2 中国科学院西安光学精密机械研究所,西安 710119
在神光II装置上,利用选通脉冲与激光脉冲在示波器上的时间关联建立了一套X射线分幅相机的时间定标方法.以激光打靶的第一分幅像为定标点,由对应的电脉冲关系得到定时的基准.采用四路260 J、1 ns、0.35 μm的激光打击镀金球靶的分幅照相,确定了X射线发射在MCP微带线上的基准点,时标准确度为50 ps.在惯性约束聚变背光照相实验中,该时标系统得到成功应用.
X射线分幅相机 时间定标 选通脉冲 惯性约束聚变 X-ray framing cameras Timing Gate pulse Inertial confinement fusion 
光子学报
2009, 38(3): 536
作者单位
摘要
1 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室,西安 710119
2 中国科学院研究生院,北京 100049
3 西北大学,西安 710069
提出了一种基于光纤阵列的新型电光开关, 设计了高速电光选通电路.经实验测得, 高压选通电路可获得电压幅度6 000 V可调, 前、后沿小于30 ns, 触发晃动小于1 ns, 脉冲宽度为100 ns可调的高压矩形脉冲.用小口径电光晶体实现了大的通光口径、快的开关速度的惯性约束核聚变驱动系统光开关.选出了在100 ns标称开关速度内所关心的光信息, 满足了惯性约束核聚变驱动系统中大的通光口径和均匀性的要求.
光纤阵列面板 电光开关 高压选通脉冲 MOS场效应管 Fiber array faceplate Electro-optical switch High voltage gating pulse MOSFET 
光子学报
2009, 38(9): 2210

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!