作者单位
摘要
1 弱光非线性光子学教育部重点实验室, 南开大学物理科学学院, 泰达应用物理研究院, 天津 300071
2 天津大学精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072
3 药物化学生物学国家重点实验室, 南开大学生命科学学院, 天津 300071
4 极端光学协同创新中心, 山西大学, 山西 太原 030006
21世纪初诞生的超分辨光学成像技术在生命科学研究中发挥着巨大作用,极大地增强了人们探索微纳尺度亚细胞结构的能力,然而这些成像技术往往耗时长,成本高。如今,许多研究者致力于基于深度学习的图像超分辨重建算法的研究中。利用自主搭建的随机光学重构超分辨显微镜获得细胞微管骨架超分辨图像,然后采用双线性插值降采样法处理得到低分辨率输入图集,再分别使用传统的三次样条插值法和增强型深度超分辨率神经网络进行学习训练,实现低分辨率图像的超分辨重建。结果表明:通过深度学习所重建的各种降采样的图像效果均优于采用传统插值法得到的图像效果,尤其是二倍降采样重建图像在主观和客观评价指标上可比拟实验获得的微管骨架超分辨图像。基于增强型深度超分辨率神经网络的细胞骨架图像超分辨重建有望提供一种简捷、有效和高性价比的成像方法,可应用于对细胞骨架超微结构的快速预测。
图像处理 深度学习 图像超分辨重建 随机光学重构显微术 细胞骨架 
光学学报
2020, 40(24): 2410001
作者单位
摘要
1 吉林大学 集成光电子国家重点联合实验室 电子科学与工程学院, 吉林 长春 130012
2 南方科技大学 生物医学工程系, 广东 深圳 518055
为了进一步认知复杂环境中的细胞生物学过程, 研究人员发展了各种各样的生物成像技术。在这些技术中, 生物荧光成像因简单的成像条件以及对生物样品的相容性而得到了广泛的发展。然而, 传统的荧光成像技术受到了光学衍射极限的限制, 无法分辨低于200 nm的空间结构, 阻碍了对亚细胞结构的生物学过程研究。超分辨荧光显微镜技术突破了传统光学衍射对成像分辨率的限制, 能够获取纳米尺度的细胞动态过程。除了对传统的宽场荧光显微镜框架的改进及升级改造之外, 目前典型的超分辨成像显微镜技术通常依赖于荧光探针材料的光物理性质。常用的荧光探针材料包括荧光蛋白、有机荧光分子和纳米荧光材料等。本文介绍了几种主流的超分辨荧光显微成像技术并总结了已经成功应用到超分辨生物荧光成像中的荧光探针材料的应用进展。
超分辨荧光成像 受激发射损耗显微镜 光激活定位荧光显微术 随机光学重构显微术 超分辨光学涨落成像 荧光探针 super-resolution fluorescence imaging stimulated emission depletion microscopy photoactivated localization fluoroscopy stochastic optical reconstruction microscopy super-resolution optical fluctuation imaging fluorescent probes 
中国光学
2018, 11(3): 344
作者单位
摘要
1 南开大学 物理科学学院 泰达应用物理研究院 弱光非线性光子学教育部重点实验室, 天津 300071
2 南开大学 生物治疗协同创新中心, 天津 300071
在光学显微成像领域, 涌现出一批可以突破衍射极限的超分辨显微成像技术, 极大地增强了人们研究亚细胞结构的能力。基于单分子定位技术的随机光学重构显微术(Stochastic Optical Reconstruction Microscopy, STORM)具有易懂的成像原理、简单的工作方式以及超高的分辨率等特点, 受到越来越多的研究者青睐。首先, 介绍了单分子定位技术的原理, 讨论了STORM光路的搭建, 阐述了二维和三维STORM超分辨显微成像原理。其次, 探讨了多色STORM以及STORM与电镜关联成像现状。最后介绍了STORM技术现阶段的应用进展。
超分辨成像 单分子定位 随机光学重构显微术 关联成像 super-resolution imaging single molecule localization Stochastic Optical Reconstruction Microscopy correlative imaging 
红外与激光工程
2017, 46(11): 1103008

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!