首页 > 论文 > 中国激光 > 46卷 > 5期(pp:508011--1)

可见波段超快脉冲激光研究进展

Research Progress of Ultrafast Pulsed Lasers in Visible Range

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

超快脉冲激光因具有超短的响应时间及较高的峰值功率而在激光加工及强场物理学等领域有重要应用。随着蓝光激光二极管及掺杂镨离子激光增益介质的发展,可见波段超快脉冲激光迅速发展,主要综述了可见波段超快脉冲激光的研究进展及现状,详细描述了克尔透镜锁模、高重复频率吉赫兹自锁模及基于可饱和吸收体的锁模等技术在可见光波段的应用,并展望了可见波段超快激光的发展方向及前景。

Abstract

An ultrafast pulsed laser has important applications in some fields, such as laser processing and strong field physics, because of its ultrashort response time and ultrahigh peak power. Accordingly, the ultrafast pulsed laser has been rapidly developed in the visible range with the development of the blue laser diodes and the praseodymium-ion-doped laser gain media. In this study, we mainly review the research progress and status of ultrafast pulsed lasers in the visible range, and describe the applications of the mode-locking technology in the visible range, including Kerr-lens mode-locking, high repetition rate GHz-frequency self-mode-locking, and mode-locking based on saturable absorbers. Further, the futher development direction and perspectives of ultrafast visible lasers are prospected.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O73

DOI:10.3788/cjl201946.0508011

所属栏目:“超快激光非线性光学”专题

基金项目:国家自然科学基金(51772173,51632004)、国家重点研发计划(2016YFB1102301,2016YFB0701002)、山东省重点研发计划(2017CXGC0414)

收稿日期:2019-01-10

修改稿日期:2019-02-02

网络出版日期:2019-02-18

作者单位    点击查看

张玉霞:山东大学晶体材料研究所晶体材料国家重点实验室, 山东 济南 250100
于浩海:山东大学晶体材料研究所晶体材料国家重点实验室, 山东 济南 250100
张怀金:山东大学晶体材料研究所晶体材料国家重点实验室, 山东 济南 250100

联系人作者:于浩海(haohaiyu@sdu.edu.cn); 张怀金(huaijinzhang@sdu.edu.cn);

【1】Wheeland R G. Clinical uses of lasers in dermatology[J]. Lasers in Surgery and Medicine, 1995, 16(1): 2-23.

【2】Shapiro M J, Chow C C, Karth P A, et al. Effects of green diode laser in the treatment of pediatric coats disease[J]. American Journal of Ophthalmology, 2011, 151(4): 725-731.

【3】Keller U, Miller D A B, Boyd G D, et al. Solid-state low-loss intracavity saturable absorber for Nd∶YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber[J]. Optics Letters, 1992, 17(7): 505-507.

【4】Chellappan K V, Erden E, Urey H. Laser-based displays[J]. Applied Optics, 2010, 49(25): F79-F98.

【5】Hedges M P, Longdell J J, Li Y M, et al. Efficient quantum memory for light[J]. Nature, 2010, 465(7301): 1052-1056.

【6】Krnkel C, Marzahl D T, Moglia F, et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers[J]. Laser & Photonics Reviews, 2016, 10(4): 548-568.

【7】Keller U. Recent developments in compact ultrafast lasers[J]. Nature, 2003, 424(6950): 831.

【8】Zhang Y X, Wang S X, Yu H H, et al. Atomic-layer molybdenum sulfide optical modulator for visible coherent light[J]. Scientific Reports, 2015, 5: 11342.

【9】Wu D D, Cai Z P, Zhong Y L, et al. Compact passive Q-switching Pr3+-doped ZBLAN fiber laser with black phosphorus-based saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(1): 0900106.

【10】Xu B, Luo S Y, Yan X G, et al. CdTe/CdS quantum dots: effective saturable absorber for visible lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(5): 1-7.

【11】Luo S Y, Yan X G, Xu B, et al. Few-layer Bi2Se3-based passively Q-switched Pr∶YLF visible lasers[J]. Optics Communications, 2018, 406: 61-65.

【12】Wang S X, Zhang Y X, Xing J, et al. Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers[J]. Applied Physics Letters, 2015, 107(16): 161103.

【13】Duling I N. Compact sources of ultrashort pulses[M]. Cambridge: Cambridge University Press, 1995.

【14】Ruan S, French P M W, Chai B H T, et al. Kerr lens modelocked solid state laser in the red (639 nm)[J]. Electronics Letters, 1994, 30(19): 1601-1602.

【15】Ruan S, Chai B H T, Sutherland J M, et al. Kerr-lens mode-locked visible transitions of a Pr∶YLF laser[J]. Optics Letters, 1995, 20(9): 1041-1043.

【16】Tong Y, Shestakov A, Chai B, et al. Self-starting Kerr-lens mode-locked femtosecond Cr4+∶YAG and picosecond Pr3+∶YLF solid-state lasers[J]. Optics Letters, 1996, 21(9): 644-646.

【17】Sutherland J M, Chai B H T, French P M W, et al.Visible continuous-wave laser transitions in Pr3+∶YLF and femtosecond pulse generation[J]. Optics Letters, 1996, 21(11): 797-799.

【18】Esterowitz L, Bartoli F J, Allen R E, et al. Energy levels and line intensities of Pr3+ in LiYF4[J]. Physical Review B, 1979, 19(12): 6442.

【19】Iijima K, Kariyama R, Tanaka H, et al. Pr3+∶YLF mode-locked laser at 640 nm directly pumped by InGaN-diode lasers[J]. Applied Optics, 2016, 55(28): 7782-7787.

【20】Hu H, Mulvad H C H, Peucheret C, et al. 10 GHz pulse source for 640 Gbit/s OTDM based on phase modulator and self-phase modulation[J]. Optics Express, 2011, 19(26): B343-B349.

【21】Gerginov V, Tanner C E, Diddams S A, et al. High-resolution spectroscopy with a femtosecond laser frequency comb[J]. Optics Letters, 2005, 30(13): 1734-1736.

【22】Sun Y, Pan J Q, Zhao L J, et al. All-optical clock recovery for 20 Gb/s using an amplified feedback DFB laser[J]. Journal of Lightwave Technology, 2010, 28(17): 2521-2525.

【23】Zhuang W Z, Chang M T, Liang H C, et al. High-power high-repetition-rate subpicosecond monolithic Yb∶KGW laser with self-mode locking[J]. Optics Letters, 2013, 38(14): 2596-2599.

【24】Liang H, Chen R C, Huang Y, et al. Compact efficient multi-GHz Kerr-lens mode-locked diode-pumped Nd∶YVO4 laser[J]. Optics Express, 2008, 16(25): 21149-21154.

【25】Zhang Y X, Yu H H, Zhang H J, et al. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate[J]. Optics Letters, 2016, 41(12): 2692-2695.

【26】Xie G Q, Tang D Y, Zhao L M, et al. High-power self-mode-locked Yb∶Y2O3 ceramic laser[J]. Optics Letters, 2007, 32(18): 2741-2743.

【27】Liu K X, Flood C J, Walker D R, et al. Kerr lens mode locking of a diode-pumped Nd∶ YAG laser[J]. Optics Letters, 1992, 17(19): 1361-1363.

【28】Piché M. Beam reshaping and self-mode-locking in nonlinear laser resonators[J]. Optics Communications, 1991, 86(2): 156-160.

【29】Cerullo G, de Silvestri S, Magni V. Self-starting Kerr-lens mode locking of a Ti∶sapphire laser[J]. Optics Letters, 1994, 19(14): 1040-1042.

【30】Hnninger C, Paschotta R, Morier-Genoud F, et al. Q-switching stability limits of continuous-wave passive mode locking[J]. Journal of the Optical Society of America B, 1999, 16(1): 46-56.

【31】Haus H A. Theory of mode locking with a fast saturable absorber[J]. Journal of Applied Physics, 1975, 46(7): 3049-3058.

【32】Haus H. Parameter ranges for CW passive mode locking[J]. IEEE Journal of Quantum Electronics, 1976, 12(3): 169-176.

【33】Zhang H J, Zhang Y X, Yu H H, et al. Pr3+-doped laser crystals and their all-solid-state pulse visible lasers[J]. Journal of the Chinese Ceramic Society, 2017, 45(10): 1392-1401.
张怀金, 张玉霞, 于浩海, 等. 掺镨激光晶体及其全固态脉冲可见激光研究[J]. 硅酸盐学报, 2017, 45(10): 1392-1401.

【34】Tan W D, Tang D Y, Xu C W, et al. Evidence of dissipative solitons in Yb3+∶CaYAlO4[J]. Optics Express, 2011, 19(19): -18500.

【35】Ma J, Huang H T, Ning K J, et al. Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb∶CaYAlO4 laser[J]. Optics Letters, 2016, 41(5): 890-893.

【36】Cornacchia F, di Lieto A, Tonelli M, et al. Efficient visible laser emission of GaN laser diode pumped Pr-doped fluoride scheelite crystals[J]. Optics Express, 2008, 16(20): 15932-15941.

【37】Abe R, Kojou J, Masuda K, et al. Cr4+-doped Y3Al5O12 as a saturable absorber for a Q-switched and mode-locked 639-nm Pr3+-doped LiYF4 laser[J]. Applied Physics Express, 2013, 6(3): 032703.

【38】Kariyama R, Tanaka H, Kojou J, et al. Passive Q-switching of visible Pr3+∶LiYF4 laser with Cr4+∶YAG saturable absorber and intracavity second harmonic generation at DUV[C]. Advanced Solid State Lasers, 2014.

【39】Li B, Jia T, Yang Y, et al. Diode-end-pumped passively mode-locked Nd∶GAGG laser at 1.3 μm with SESAM[J]. Laser Physics Letters, 2012, 9(8): 557-560.

【40】Gaponenko M, Metz P W, Hrknen A, et al. SESAM mode-locked red praseodymium laser[J]. Optics Letters, 2014, 39(24): 6939-6941.

【41】Bao Q L, Zhang H, Wang Y, et al. Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers[J]. Advanced Functional Materials, 2009, 19(19): 3077-3083.

【42】Novoselov K S, Geim A K, Morozov S, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

【43】Splendiani A, Sun L, Zhang Y B, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275.

【44】Qiao J S, Kong X H, Hu Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2014, 5: 4475.

【45】Wang Y C, Chen W D, Mero M, et al. Sub-100 fs Tm∶MgWO4 laser at 2017 nm mode locked by a graphene saturable absorber[J]. Optics Letters, 2017, 42(16): 3076-3079.

【46】Martinez A, Sun Z P. Nanotube and graphene saturable absorbers for fibre lasers[J]. Nature Photonics, 2013, 7(11): 842-845.

【47】Luo Z Q, Wu D D, Xu B, et al. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers[J]. Nanoscale, 2016, 8(2): 1066-1072.

【48】George P A, Strait J, Dawlaty J, et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene[J]. Nano Letters, 2008, 8(12): 4248-4251.

【49】Bao Q L, Zhang H, Ni Z H, et al. Monolayer graphene as a saturable absorber in a mode-locked laser[J]. Nano Research, 2011, 4(3): 297-307.

【50】Zhang Y X, Lu D Z, Yu H H, et al. Low-dimensional saturable absorbers in the visible spectral region[J]. Advanced Optical Materials, 2019, 7(1): 1800886.

【51】Woodward R I, Howe R C T, Hu G, et al. Few-layer MoS2 saturable absorbers for short-pulse laser technology: current status and future perspectives[J]. Photonics Research, 2015, 3(2): A30.

【52】Zhang Y X, Yu H H, Zhang R, et al. Broadband atomic-layer MoS2 optical modulators for ultrafast pulse generations in the visible range[J]. Optics Letters, 2017, 42(3): 547-550.

【53】Lu S B, Miao L L, Guo Z N, et al. Broadband nonlinear optical response in multi-layer black phosphorus: an emerging infrared and mid-infrared optical material[J]. Optics Express, 2015, 23(9): 11183-11194.

【54】Hanlon D, Backes C, Doherty E, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics[J]. Nature Communications, 2015, 6: 8563.

【55】Luo Z Q, Huang Y Z, Weng J, et al. 1.06 nm Q-switched ytterbium-doped fiber laser using few-layer topological insulator Bi2Te3 as a saturable absorber[J]. Optics Express, 2013, 21(24): 29516-29522.

【56】Zhang Z Y, Shao C L, Li X H, et al. Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2010, 2(10): 2915-2923.

【57】Anisimov V I, Solovyev I V, Korotin M A, et al. Density-functional theory and NiO photoemission spectra[J]. Physical Review B, 1993, 48(23): 16929-16934.

【58】Newman R, Chrenko R M. Optical properties of nickel oxide[J]. Physical Review, 1959, 114(6): 1507-1513.

【59】Volkov V V, Wang Z L, Zou B S. Carrier recombination in clusters of NiO[J]. Chemical Physics Letters, 2001, 337(1/2/3): 117-124.

【60】Sun B, Zhang Y X, Zhang R, et al. Nonlinear optical response during the electron transition process originated from 3D spin-orbit splitting in NiO nanosheets[J]. Optics Express, 2018, 26(2): 1230-1236.

引用该论文

Zhang Yuxia,Yu Haohai,Zhang Huaijin. Research Progress of Ultrafast Pulsed Lasers in Visible Range[J]. Chinese Journal of Lasers, 2019, 46(5): 0508011

张玉霞,于浩海,张怀金. 可见波段超快脉冲激光研究进展[J]. 中国激光, 2019, 46(5): 0508011

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF