首页 > 论文 > Photonics Research > 9卷 > 1期(pp:73-80)

Plasmonic evolution maps for planar metamaterials

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

Abstract

Understanding the mode’s origin in planar metamaterials is fundamental for related applications in nanophotonics and plasmonics. For complex planar metamaterials, conventional analysis that directly obtains the final charge/current distribution of a mode is usually difficult in helping to understand the mode’s origin. In this paper, we propose a mode evolution method (MEM) with a core analysis tool, i.e., plasmonic evolution maps (PEMs), to describe the mode evolution in several complementary planar metamaterials with designed plasmonic atoms/molecules. The PEMs could not only clearly explain a mode’s origin, but also reveal the role of a structure’s symmetry in the mode formation process. The MEM with PEMs can work as a simple, efficient, and universal approach for the mode analysis in different kinds of planar metamaterials.

广告组1.2 - 空间光调制器+DMD
补充资料

DOI:10.1364/PRJ.404355

所属栏目:Research Articles

基金项目:National Natural Science Foundation of China10.13039/501100001809; Natural Science Foundation of Jiangsu Province10.13039/501100004608; Six Talent Peaks Project in Jiangsu Province10.13039/501100010014; Fundamental Research Funds for the Central Universities10.13039/501100012226;

收稿日期:2020-08-03

录用日期:2020-11-15

网络出版日期:2020-11-18

作者单位    点击查看

Liyong Jiang:Institute of Micro-nano Photonics & Beam Steering, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China;e-mail: jly@njust.edu.cn
Jianli Jiang:Institute of Micro-nano Photonics & Beam Steering, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
Zebin Zhu:Institute of Micro-nano Photonics & Beam Steering, School of Science, Nanjing University of Science and Technology, Nanjing 210094, China
Guanghui Yuan:Centre for Disruptive Photonic Technologies, The Photonics Institute, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
Ming Kang:College of Physics and Electronic Information Science, Tianjin Normal University, Tianjin 300387, China
Ze Xiang Shen:Centre for Disruptive Photonic Technologies, The Photonics Institute, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore;e-mail: zexiang@ntu.edu.sg

联系人作者:Liyong Jiang(jly@njust.edu.cn); Ze Xiang Shen(zexiang@ntu.edu.sg);

备注:National Natural Science Foundation of China10.13039/501100001809; Natural Science Foundation of Jiangsu Province10.13039/501100004608; Six Talent Peaks Project in Jiangsu Province10.13039/501100010014; Fundamental Research Funds for the Central Universities10.13039/501100012226;

【1】N. I. ZheludevN. I. Zheludev. The road ahead for metamaterials. Science. 328, 582-583(2010).

【2】Y. M. Liu and X. Zhang. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 40, 2494-2507(2011).

【3】H. T. Chen, A. J. Taylor and N. F. Yu. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, (2016).

【4】S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar and C. R. Simovski. Metasurfaces: from microwaves to visible. Phys. Rep. 634, 1-72(2016).

【5】D. R. Smith, J. B. Pendry and M. C. K. Wiltshire. Metamaterials and negative refractive index. Science. 305, 788-792(2004).

【6】U. FanoU. Fano. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am. 31, 213-222(1941).

【7】B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen and C. T. Chong. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707-715(2010).

【8】N. Papasimakis, V. A. Fedotov, N. I. Zheludev and S. L. Prosvirnin. Metamaterial analog of electromagnetically induced transparency. Phys. Rev. Lett. 101, (2008).

【9】N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau and H. Giessen. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758-762(2009).

【10】J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. G. Han and W. L. Zhang. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun. 3, (2012).

【11】Y. Li, S. Kita, P. Munoz, O. Reshef, D. I. Vulis, M. Yin, M. Loncar and E. Mazur. On-chip zero-index metamaterials. Nat. Photonics. 9, 738-743(2015).

【12】H. C. Chu, Q. Li, B. B. Liu, J. Luo, S. L. Sun, Z. H. Hang, L. Zhou and Y. Lai. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials. Light Sci. Appl. 7, (2018).

【13】H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar and V. M. Menon. Topological transitions in metamaterials. Science. 336, 205-209(2012).

【14】W. J. Chen, S. J. Jiang, X. D. Chen, B. C. Zhu, L. Zhou, J. W. Dong and C. T. Chan. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide. Nat. Commun. 5, (2014).

【15】J. Cha, K. W. Kim and C. Daraio. Experimental realization of on-chip topological nanoelectromechanical metamaterials. Nature. 564, 229-233(2018).

【16】N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith and W. J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett. 100, (2008).

【17】X. L. Xu, B. Peng, D. H. Li, J. Zhang, L. M. Wong, Q. Zhang, S. J. Wang and Q. H. Xiong. Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing. Nano Lett. 11, 3232-3238(2011).

【18】C. H. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug and G. Shvets. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 11, 69-75(2012).

【19】E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard and M. Kadodwala. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5, 783-787(2010).

【20】C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener and G. Shvets. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun. 5, (2014).

【21】Y. Chen, J. Gao and X. D. Yang. Chiral metamaterials of plasmonic slanted nanoapertures with symmetry breaking. Nano Lett. 18, 520-527(2018).

【22】Y. Zhao and A. Alu. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates. Nano Lett. 13, 1086-1091(2013).

【23】Y. J. Chiang and T. J. Yen. A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission. Appl. Phys. Lett. 102, (2013).

【24】S. C. Jiang, X. Xiong, Y. S. Hu, Y. H. Hu, G. B. Ma, R. W. Peng, C. Sun and M. Wang. Controlling the polarization state of light with a dispersion-free metastructure. Phys. Rev. X. 4, (2014).

【25】M. Papaioannou, E. Plum, J. Valente, E. T. F. Rogers and N. I. Zheludev. Two-dimensional control of light with light on metasurfaces. Light Sci. Appl. 5, (2016).

【26】A. Xomalis, I. Demirtzioglou, E. Plum, Y. Jung, V. Nalla, C. Lacava, K. F. MacDonald, P. Petropoulos, D. J. Richardson and N. I. Zheludev. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption. Nat. Commun. 9, (2018).

【27】H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer and W. J. Padilla. Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photonics. 2, 295-298(2008).

【28】G. Scalari, C. Maissen, D. Turcinkova, D. Hagenmueller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck and J. Faist. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science. 335, 1323-1326(2012).

【29】F. Valmorra, G. Scalari, C. Maissen, W. Fu, C. Schoenenberger, J. W. Choi, H. G. Park, M. Beck and J. Faist. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial. Nano Lett. 13, 3193-3198(2013).

【30】R. Degl’Innocenti, D. S. Jessop, Y. D. Shah, J. Sibik, J. A. Zeitler, P. R. Kidambi, S. Hofmann, H. E. Beere and D. A. Ritchie. Low-bias terahertz amplitude modulator based on split-ring resonators and graphene. ACS Nano. 8, 2548-2554(2014).

【31】N. Dabidian, I. Kholmanov, A. B. Khanikaev, K. Tatar, S. Trendafilov, S. H. Mousavi, C. Magnuson, R. S. Ruoff and G. Shvets. Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces. ACS Photon. 2, 216-227(2015).

【32】P. Q. Liu, I. J. Luxmoore, S. A. Mikhailov, N. A. Savostianova, F. Valmorra, J. Faist and G. R. Nash. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons. Nat. Commun. 6, (2015).

【33】O. Balci, N. Kakenov, E. Karademir, S. Balci, S. Cakmakyapan, E. O. Polat, H. Caglayan, E. Ozbay and C. Kocabas. Electrically switchable metadevices via graphene. Sci. Adv. 4, (2018).

【34】A. Chanana, X. J. Liu, C. Zhang, Z. V. Vardeny and A. Nahata. Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites. Sci. Adv. 4, (2018).

【35】M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu and F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science. 352, 1190-1194(2016).

【36】S. M. Wang, P. C. Wu, V. C. Su, Y. C. Lai, C. H. Chu, J. W. Chen, S. H. Lu, J. Chen, B. B. Xu, C. H. Kuan, T. Li, S. N. Zhu and D. P. Tsai. Broadband achromatic optical metasurface devices. Nat. Commun. 8, (2017).

【37】L. L. Huang, X. Z. Chen, H. Muhlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf and S. Zhang. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, (2013).

【38】G. X. Zheng, H. Muhlenbernd, M. Kenney, G. X. Li, T. Zentgraf and S. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308-312(2015).

【39】G. H. Yuan and N. I. Zheludev. Detecting nanometric displacements with optical ruler metrology. Science. 364, 771-775(2019).

【40】G. MieG. Mie. Beitr?ge zur Optik trüber Medien, speziell kolloidaler Metall?sungen. Ann. Phys. 330, 377-445(1908).

【41】M. Kang, Y. D. Chong, H. T. Wang, W. R. Zhu and M. Premaratne. Critical route for coherent perfect absorption in a Fano resonance plasmonic system. Appl. Phys. Lett. 105, (2014).

【42】J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tunnermann, F. Lederer and T. Pertsch. Multipole approach to metamaterials. Phys. Rev. A. 78, (2008).

【43】L. Y. Jiang, T. T. Yin, A. M. Dubrovkin, Z. G. Dong, Y. T. Chen, W. J. Chen, J. K. W. Yang and Z. X. Shen. In-plane coherent control of plasmon resonances for plasmonic switching and encoding. Light Sci. Appl. 8, (2019).

【44】J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo and M. Sorolla. Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Antennas Wireless Propag. Lett. 53, 1451-1461(2005).

【45】K. G. Balmain, A. A. E. Luttgen and P. C. Kremer. Resonance cone formation, reflection, refraction, and focusing in a planar anisotropic metamaterial. IEEE Antennas Wireless. Propag. Lett. 1, 146-149(2002).

【46】W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht and F. R. Aussenegg. Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137-141(2003).

【47】E. Prodan, C. Radloff, N. J. Halas and P. Nordlander. A hybridization model for the plasmon response of complex nanostructures. Science. 302, 419-422(2003).

【48】P. K. Jain and M. A. El-Sayed. Plasmonic coupling in noble metal nanostructures. Chem. Phys. Lett. 487, 153-164(2010).

【49】N. J. Halas, S. Lal, W. S. Chang, S. Link and P. Nordlander. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913-3961(2011).

【50】B. Memarzadeh and H. Mosallaei. Array of planar plasmonic scatterers functioning as light concentrator. Opt. Lett. 36, 2569-2571(2011).

【51】S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li and L. Zhou. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426-431(2012).

【52】H. C. Guo, N. Liu, L. W. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer and H. Giessen. Resonance hybridization in double split-ring resonator metamaterials. Opt. Express. 15, 12095-12101(2007).

【53】N. Liu, S. Kaiser and H. Giessen. Magnetoinductive and electroinductive coupling in plasmonic metamaterial molecules. Adv. Mater. 20, 4521-4525(2008).

【54】K. Aydin, I. M. Pryce and H. A. Atwater. Symmetry breaking and strong coupling in planar optical metamaterials. Opt. Express. 18, 13407-13417(2010).

【55】F. V. Cube, S. Irsen, R. Diehl, J. Niegemann, K. Busch and S. Linden. From isolated metaatoms to photonic metamaterials: evolution of the plasmonic near-field. Nano Lett. 13, 703-708(2013).

【56】R. Singh, I. A. I. Al-Naib, Y. P. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti and W. L. Zhang. Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl. Phys. Lett. 99, (2011).

【57】R. Singh, I. A. I. Al-Naib, M. Koch and W. Zhang. Asymmetric planar terahertz metamaterials. Opt. Express. 18, 13044-13050(2010).

【58】R. Singh, W. Cao, I. Al-Naib, L. Q. Cong, W. Withayachumnankul and W. L. Zhang. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces. Appl. Phys. Lett. 105, (2014).

【59】F. Falcone, T. Lopetegi, M. A. G. Laso, J. D. Baena, J. Bonache, M. Beruete, R. Marques, F. Martin and M. Sorolla. Babinet principle applied to the design of metasurfaces and metamaterials. Phys. Rev. Lett. 93, (2004).

【60】H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee and W. J. Padilla. Complementary planar terahertz metamaterials. Opt. Express. 15, 1084-1095(2007).

【61】R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor and W. L. Zhang. Effect of metal permittivity on resonant properties of terahertz metamaterials. Opt. Lett. 33, 1506-1508(2008).

引用该论文

Liyong Jiang, Jianli Jiang, Zebin Zhu, Guanghui Yuan, Ming Kang, and Ze Xiang Shen, "Plasmonic evolution maps for planar metamaterials," Photonics Research 9(1), 73-80 (2021)

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF