首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1030001--1)

基于多次谐波联合分析的气体浓度反演方法

Gas Concentration Inversion Method Based on Multiple Harmonic Joint Analysis

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

鉴于2次谐波外的其他谐波成分中依然蕴含着浓度信息,提出了基于2次+4次谐波、2次+4次+6次谐波、2次+4次+6次+8次谐波的三种浓度反演方法,推导出各自的气体浓度反演表达式,评估了所提反演方式对应的最佳调制度,分析了气体浓度检测系统中噪声干扰的主要存在形式,在理论上证明了所提出的联合多次谐波分析方法可以显著提升噪声抑制能力,并给出了用于参考的实验方案。仿真结果表明:与基于2次谐波峰值的浓度反演方法相比,2次+4次谐波可以使浓度反演误差降低31.38%,2次+4次+6次谐波可以使浓度反演误差降低42.03%,2次+4次+6次+8次谐波可以使浓度反演误差降低47.45%。

Abstract

In view of the fact that other harmonic components besides the second harmonic still contain concentration information,three concentration inversion methods based on 2nd-/4th-harmonics, 2nd-/4th-/6th-harmonics, and 2nd-/4th-/6th-/8th-harmonics, as well as their corresponding expressions, are presented while the optimal value of the modulation depth for each inversion method is evaluated. The main forms of noise interference in gas concentration detection systems are also analyzed and the usefulness of multiple harmonic analysis for noise suppression is proved theoretically. Finally, an experimental verification scheme is given for reference. Our simulation''s results indicate that the above methods can reduce concentration inversion errors by 31.38%, 42.03%, and 47.45%, respectively, as compared with the 2nd-harmonic-based method.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O657.38

DOI:10.3788/AOS201939.1030001

所属栏目:光谱学

基金项目:国家自然科学基金面上项目、国家自然科学基金重点项目、国家自然科学基金创新研究群体科学基金;

收稿日期:2019-03-25

修改稿日期:2019-05-23

网络出版日期:2019-10-01

作者单位    点击查看

刘紫怀:中南大学自动化学院, 湖南 长沙 410083
阳春华:中南大学自动化学院, 湖南 长沙 410083
罗旗舞:中南大学自动化学院, 湖南 长沙 410083
朱高峰:湖南人文科技学院信息学院, 湖南 娄底 417000

联系人作者:刘紫怀(liuzihuai@csu.edu.cn); 阳春华(ychh@csu.edu.cn); 罗旗舞(luoqiwu_csu@163.com);

备注:国家自然科学基金面上项目、国家自然科学基金重点项目、国家自然科学基金创新研究群体科学基金;

【1】Reid J, Shewchun J, Garside B K et al. High sensitivity pollution detection employing tunable diode lasers [J]. Applied Optics. 1978, 17(2): 300-307.

【2】Hanson R K and Falcone P K. Temperature measurement technique for high-temperature gases using a tunable diode laser [J]. Applied Optics. 1978, 17(16): 2477-2480.

【3】Allen M G. Diode laser absorption sensors for gas-dynamic and combustion flows [J]. Measurement Science and Technology. 1998, 9(4): 545-562.

【4】Eckbreth A C. Recent advances in laser diagnostics for temperature and species concentration in combustion [J]. Symposium (International) on Combustion. 1981, 18(1): 1471-1488.

【5】Hanson R K. Combustion diagnostics: planar imaging techniques [J]. Symposium (International) on Combustion. 1988, 21(1): 1677-1691.

【6】Kohse-H inghaus K. Laser techniques for the quantitative detection of reactive intermediates in combustion systems [J]. Progress in Energy and Combustion Science. 1994, 20(3): 203-279.

【7】Kan R F, Xia H H, Xu Z Y et al. Research and progress of flow field diagnosis based on laser absorption spectroscopy [J]. Chinese Journal of Lasers. 2018, 45(9): 0911005.
阚瑞峰, 夏晖晖, 许振宇 等. 激光吸收光谱流场诊断技术应用研究与进展 [J]. 中国激光. 2018, 45(9): 0911005.

【8】Gao Y W, Zhang Y J, Chen D et al. Measurement of oxygen concentration using tunable diode laser absorption spectroscopy [J]. Acta Optica Sinica. 2016, 36(3): 0330001.
高彦伟, 张玉钧, 陈东 等. 基于可调谐半导体激光吸收光谱的氧气浓度测量研究 [J]. 光学学报. 2016, 36(3): 0330001.

【9】He Q X, Dang P P, Liu Z W et al. TDLAS-WMS based near-infrared methane sensor system using hollow-core photonic crystal fiber as gas-chamber [J]. Optical and Quantum Electronics. 2017, 49(3): 115.

【10】Mantz A W. A review of the applications of tunable diode laser spectroscopy at high sensitivity [J]. Microchemical Journal. 1994, 50(3): 351-364.

【11】Arndt R. Analytical line shapes for Lorentzian signals broadened by modulation [J]. Journal of Applied Physics. 1965, 36(8): 2522-2524.

【12】Reid J and Labrie D. Second-harmonic detection with tunable diode lasers-comparison of experiment and theory [J]. Applied Physics B. 1981, 26(3): 203-210.

【13】Axner O, Kluczynski P and Lindberg M. A general non-complex analytical expression for the nth Fourier component of a wavelength-modulated Lorentzian lineshape function [J]. Journal of Quantitative Spectroscopy and Radiative Transfer. 2001, 68(3): 299-317.

【14】Rieker G B, Jeffries J B and Hanson R K. Calibration-free wavelength-modulation spectroscopy for measurements of gas temperature and concentration in harsh environments [J]. Applied Optics. 2009, 48(29): 5546-5560.

【15】Li H J, Rieker G B, Liu X et al. Extension of wavelength-modulation spectroscopy to large modulation depth for diode laser absorption measurements in high-pressure gases [J]. Applied Optics. 2006, 45(5): 1052-1061.

【16】Sun K, Chao X, Sur R et al. Wavelength modulation diode laser absorption spectroscopy for high-pressure gas sensing [J]. Applied Physics B. 2013, 110(4): 497-508.

【17】Garner R M, Dharamsi A N and Khan M A. Ultra-sensitive probe of spectral line structure and detection of isotopic oxygen [J]. Applied Physics B. 2018, 124: 15.

【18】Martin P and Puerta J. Generalized Lorentzian approximations for the Voigt line shape [J]. Applied Optics. 1981, 20(2): 259-263.

【19】Lackner M. Tunable diode laser absorption spectroscopy (TDLAS) in the process industries-a review [J]. Reviews in Chemical Engineering. 2007, 23(2): 65-147.

【20】Werle P, Mücke R and Slemr F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS) [J]. Applied Physics B. 1993, 57(2): 131-139.

【21】Linnerud I, Kaspersen P and Jaeger T. Gas monitoring in the process industry using diode laser spectroscopy [J]. Applied Physics B. 1998, 67(3): 297-305.

【22】Silver J A. Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods [J]. Applied Optics. 1992, 31(6): 707-717.

引用该论文

Liu Zihuai,Yang Chunhua,Luo Qiwu,Zhu Gaofeng. Gas Concentration Inversion Method Based on Multiple Harmonic Joint Analysis[J]. Acta Optica Sinica, 2019, 39(10): 1030001

刘紫怀,阳春华,罗旗舞,朱高峰. 基于多次谐波联合分析的气体浓度反演方法[J]. 光学学报, 2019, 39(10): 1030001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF