首页 > 论文 > 光学学报 > 39卷 > 10期(pp:1014001--1)

基于中阶梯光栅的高分辨率可调谐光纤激光器

High-Resolution Tunable Fiber Laser Based on Echelle Grating

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

随着大容量光通信网络的发展和密集波分复用技术的广泛应用,多通道高精度可调谐光纤激光器成为人们的研究热点。这类激光器不仅有效减少了波分复用系统转换器、激光器以及其他模块的使用数量,降低了系统的运营维护成本和备份成本,而且还可以实现对网络资源的远程动态优化配置,为信号传输带来前所未有的灵活性和动态性能。此外,可调谐激光器在光载射频传输系统、全光波长变换、波长路由、光包交换以及基于波长的个人虚拟网络等领域也具有较高的潜在应用价值。

Abstract

Herein, we propose a high-resolution C-band tunable fiber laser based on an echelle grating and a digital micromirror device (DMD). By employing the wavelength tuning performance of DMD and the high-resolution characteristics of an echelle grating, we design a cross-dispersion structure based optical alignment system, realizing the high-resolution wavelength tuning capability. Experimental results show that the laser demonstrates flexible tuning in 1542-1558-nm region by remotely loading holograms onto the DMD. The wavelength tuning resolution is approximately 0.036 nm, and the 3-dB linewidth of the output signal is less than 0.02 nm. The side-mode suppression ratio exceeds 40 dB, the center wavelength drift is less than 0.013 nm, and the power fluctuation is less than 0.07 dB within 1 h at room temperature.

Newport宣传-MKS新实验室计划
补充资料

DOI:10.3788/AOS201939.1014001

所属栏目:激光器与激光光学

基金项目:国家重大科研仪器研制项目;

收稿日期:2019-05-05

修改稿日期:2019-06-10

网络出版日期:2019-10-01

作者单位    点击查看

马成:中央民族大学理学院, 北京 100081
李金亮:中央民族大学理学院, 北京 100081
陈笑:中央民族大学理学院, 北京 100081
戴德政:中央民族大学理学院, 北京 100081
于笑渊:中央民族大学理学院, 北京 100081
孙洁:中央民族大学理学院, 北京 100081
张佳:中央民族大学理学院, 北京 100081
陈根祥:中央民族大学理学院, 北京 100081

联系人作者:陈笑(xchen4399@126.com)

备注:国家重大科研仪器研制项目;

【1】Inui T, Komukai T and Nakazawa M. Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers. Optics Communications. 190, 1-4(2001).

【2】Yeh C H, Shih F Y, Wang C H et al. Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode. Optics Express. 16(1), 435-439(2008).

【3】Sapriel J, Charissoux D, Voloshinov V et al. Tunable acoustooptic filters and equalizers for WDM applications. Journal of Lightwave Technology. 20(5), 892-899(2002).

【4】Ding Y H, Pu M H, Liu L et al. Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure. Optics Express. 19(7), 6462-6470(2011).

【5】Parker M C, Cohen A D and Mears R J. Dynamic digital holographic wavelength filtering. Journal of Lightwave Technology. 16(7), 1259-1270(1998).

【6】Shin W, Yu B A, Lee Y L et al. Wavelength tunable optical time-domain reflectometry based on wavelength swept fiber laser employing two-dimensional digital micro-mirror array. Optics Communications. 282(6), 1191-1195(2009).

【7】Xiao F, Alameh K and Lee T. Opto-VLSI-based tunable single-mode fiber laser. Optics Express. 17(21), 18676-18680(2009).

【8】Ai Q, Chen X, Tian M et al. Demonstration of multi-wavelength tunable fiber lasers based on a digital micromirror device processor. Applied Optics. 54(4), 603-607(2015).

【9】Bykov S V, Sharma B and Asher S A. High-throughput, high-resolution echelle deep-UV Raman spectrometer. Applied Spectroscopy. 67(8), 873-883(2013).

【10】Zhang R, Yin L et al. Wavelength calibration model for prism-type echelle spectrometer by reversely solving prism’s refractive index in real time. Applied Optics. 55(15), 4153-4158(2016).

【11】Yin L, Yang J et al. High-accuracy spectral reduction algorithm for the échelle spectrometer. Applied Optics. 55(13), 3574-3581(2016).

【12】Zhang R, Yang J et al. Reduction model of the transmission prism échelle spectrometer with the C-T structure. Acta Optica Sinica. 36(7), (2016).
张锐. 巴音贺希格, 杨晋, 等. C-T型棱镜透射式中阶梯光栅光谱仪谱图还原模型. 光学学报. 36(7), (2016).

【13】Feng F, Duan F J, Bo E et al. An optical design of small-size echelle spectrograph. Opto-Electronic Engineering. 41(7), 20-25(2014).
冯帆, 段发阶, 伯恩 等. 一种小型中阶梯光栅光谱仪的光学设计. 光电工程. 41(7), 20-25(2014).

【14】Zhang R, Pan M Z, Yang J et al. Optical system of echelle spectrometer based on DMD. Optics and Precision Engineering. 25(12), 2994-3000(2017).
张锐, 潘明忠, 杨晋 等. 基于数字微镜器件的中阶梯光栅光谱仪的光学系统设计. 光学精密工程. 25(12), 2994-3000(2017).

【15】Zhang Y X, Yang H D, Deng C et al. Optical design of high-resolution echelle-prism cross-dispersion. Spectroscopy and Spectral Analysis. 33(6), 1706-1710(2013).
张尹馨, 杨怀栋, 邓超 等. 高分辨率中阶梯光栅-棱镜交叉色散光路设计. 光谱学与光谱分析. 33(6), 1706-1710(2013).

【16】Chen X, Yan B B, Song F J et al. Diffraction of digital micromirror device gratings and its effect on properties of tunable fiber lasers. Applied Optics. 51(30), 7214-7220(2012).

【17】Prabhu M, Kim N S and Ueda K I. Simultaneous double-color continuous wave Raman fiber laser at 1239 nm and 1484 nm using phosphosilicate fiber. Optical Review. 7(4), 277-280(2000).

引用该论文

Cheng Ma,Jinliang Li,Xiao Chen,Dezheng Dai,Xiaoyuan Yu,Jie Sun,Jia Zhang,Genxiang Chen. High-Resolution Tunable Fiber Laser Based on Echelle Grating[J]. Acta Optica Sinica, 2019, 39(10): 1014001

马成,李金亮,陈笑,戴德政,于笑渊,孙洁,张佳,陈根祥. 基于中阶梯光栅的高分辨率可调谐光纤激光器[J]. 光学学报, 2019, 39(10): 1014001

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF