首页 > 论文 > 激光与光电子学进展 > 56卷 > 6期(pp:63201--1)

n型与半绝缘6H-SiC晶体的超快载流子动力学

Ultrafast Carrier Dynamics in n-Type and Semi-Insulating 6H-SiC Crystals

  • 摘要
  • 论文信息
  • 参考文献
  • 被引情况
  • PDF全文
分享:

摘要

利用带间激发的超快瞬态吸收光谱,研究了导电(n型)氮(N)掺杂和半绝缘(SI)钒(V)掺杂6H-SiC晶片的超快载流子复合动力学过程。N杂质和/或固有缺陷的间接复合主导了n型6H-SiC的载流子弛豫,其寿命超过了10 ns。与n型6H-SiC相比,V掺杂对SI-6H-SiC的瞬态吸收具有显著的调制作用,这源于由V深能级的载流子俘获引起的一个额外的载流复合过程。载流子俘获(寿命约为160 ps)比间接复合快2个数量级以上。通过简化能级模型并进行全局分析,研究了6H-SiC的载流子复合机制,准确地获得了6H-SiC的载流子寿命。

Abstract

The ultrafast transient absorption spectroscopy of interband excitation is utilized to evaluate the ultrafast carrier recombination dynamics in the conductive (n-type) nitrogen (N)-doped and semi-insulating (SI) vanadium (V)-doped 6H-SiC wafers. The carrier relaxation of n-type 6H-SiC with carrier lifetime more than 10 ns is dominated by indirect recombination through N impurities and/or inherent defects. Compared with the n-type 6H-SiC, the V-doped one has a pronounced modulation of transient absorption, resulting from an additional carrier recombination process caused by the carrier trapping of V deep levels. The carrier-trapping with a lifetime of about 160 ps is more than two orders of magnitude faster than the indirect recombination. With a simplified energy level model and the global analysis, the carrier recombination mechanism is investigated and the carrier lifetime of 6H-SiC is determined accurately.

Newport宣传-MKS新实验室计划
补充资料

中图分类号:O474

DOI:10.3788/lop56.063201

所属栏目:超快光学

基金项目:国家自然科学基金(11704273)、江苏省自然科学基金(BK20170375)、江苏省高校自然科学基金(17KJB140021)、江苏省十三五重点学科(20168765)、江苏省高等学校大学生创新创业训练计划(201810332075X)

收稿日期:2018-09-25

修改稿日期:2018-09-27

网络出版日期:2018-10-10

作者单位    点击查看

聂媱:苏州科技大学数理学院, 江苏 苏州 215009
王友云:苏州科技大学数理学院, 江苏 苏州 215009
吴雪琴:苏州科技大学数理学院, 江苏 苏州 215009
方宇:苏州科技大学数理学院, 江苏 苏州 215009

联系人作者:方宇(yufang@usts.edu.cn)

【1】Neudeck P G. Progress in silicon carbide semiconductor electronics technology[J].Journal of Electronic Materials, 1995, 24(4): 283-288.

【2】Ni Y X, Jing H Q, Kong J X, et al. Thermal performance of high-power laser diodes packaged by SiC ceramic submount[J]. Chinese Journal of Lasers, 2018, 45(1): 0101002.
倪羽茜, 井红旗, 孔金霞, 等. 碳化硅封装高功率半导体激光器散热性能研究[J]. 中国激光, 2018, 45(1): 0101002.

【3】Liu G, Tuttle B R, Dhar S. Silicon carbide: A unique platform for metal-oxide-semiconductor physics[J]. Applied Physics Reviews, 2015, 2(2): 021307.

【4】Zhu K, Doan S, Moon Y T, et al. Effect of n+-GaN subcontact layer on 4H-SiC high-power photoconductive switch[J]. Applied Physics Letters, 2005, 86(26): 261108.

【5】Zvanut M E, Konovalov V V, Wang H Y, et al. Defect levels and types of point defects in high-purity and vanadium-doped semi-insulating 4H-SiC[J]. Journal of Applied Physics, 2004, 96(10): 5484-5489.

【6】Yan W J, Zhang C H, Qin X M, et al. Modulation mechanism of P-doping on photoelectric properties of two-dimensional SiC[J]. Laser & Optoelectronics Progress, 2018, 55(9): 091603.
闫万珺, 张春红, 覃信茂, 等. P掺杂对二维SiC光电特性调制的机理[J]. 激光与光电子学进展, 2018, 55(9): 091603.

【7】Gordon L, Janotti A,van de Walle C G. Defects as qubits in 3C- and 4H-SiC[J]. Physical Review B, 2015, 92(4): 045208.

【8】Saito E, Jun S D, Kimoto T. Control of carrier lifetime of thick n-type 4H-SiC epilayers by high-temperature Ar annealing[J]. Applied Physics Express, 2016, 9(6): 061303.

【9】Son N T, Trinh X T, Lvlie L S, et al. Negative-U System of carbon vacancy in 4H-SiC[J]. Physical Review Letters, 2012, 109(18): 187603.

【10】la Via F, Camarda M, la Magna A. Mechanisms of growth and defect properties of epitaxial SiC[J]. Applied Physics Reviews, 2014, 1(3): 031301.

【11】Klein P B, Shanabrook B V, Huh S W, et al. Lifetime-limiting defects in n-4H-SiC epilayers[J]. Applied Physics Letters, 2006, 88(5): 052110.

【12】Neimontas K, Malinauskas T, Aleksiejūnas R, et al. The determination of high-density carrier plasma parameters in epitaxial layers, semi-insulating and heavily doped crystals of 4H-SiC by a picosecond four-wave mixing technique[J]. Semiconductor Science and Technology, 2006, 21(7): 952-958.

【13】Klein P B. Carrier lifetime measurement in n-4H-SiC epilayers[J]. Journal of Applied Physics, 2008, 103(3): 033702.

【14】ajev P, Gudelis V, Jaraiūnas K, et al. Fast and slow carrier recombination transients in highly excited 4H- and 3C-SiC crystals at room temperature[J]. Journal of Applied Physics, 2010, 108(2): 023705.

【15】ajev P, Jaraiūnas K. Temperature- and excitation-dependent carrier diffusivity and recombination rate in 4H-SiC[J]. Journal of Physics D: Applied Physics, 2013, 46(26): 265304.

【16】Fang Y, Yang J Y, Yang Y, et al. Ultrafast carrier dynamics in a p-type GaN wafer under different carrier distributions[J]. Journal of Physics D: Applied Physics, 2016, 49(4): 045105.

【17】ajev P, Kato M, Jaraiūnas K. A diffraction-based technique for determination of interband absorption coefficients in bulk 3C-, 4H- and 6H-SiC crystals[J]. Journal of Physics D: Applied Physics, 2011, 44(36): 365402.

【18】Lebedev A A. Deep level centers in silicon carbide: A review[J]. Semiconductors, 1999, 33(2): 107-130.

【19】Persson C, Lindefelt U. Relativistic band structure calculation of cubic and hexagonal SiC polytypes[J]. Journal of Applied Physics, 1997, 82(11): 5496-5508.

【20】Limpijumnong S, Lambrecht W R L, Rashkeev S N, et al. Optical-absorption bands in the 1-3 eV range in n-type SiC polytypes[J]. Physical Review B, 1999, 59(20): 12890-12899.

【21】Shockley W, Read W T. Statistics of the recombinations of holes and electrons[J]. Physical Review, 1952, 87(5): 835-842.

【22】Tamulaitis G, Yilmaz I, Shur M S, et al. Carrier lifetime in conductive and vanadium-doped 6H-SiC substrates[J]. Applied Physics Letters, 2004, 84(3): 335-337.

【23】van Stokkum I H M, Larsen D S, van Grondelle R. Global and target analysis of time-resolved spectra[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2004, 1657(2/3): 82-104.

【24】Fang Y, Wu X Z, Ye F, et al. Dynamics of optical nonlinearities in GaN[J]. Journal of Applied Physics, 2013, 114(10): 103507.

【25】Wagner M, McLeod A S, Maddox S J, et al. Ultrafast dynamics of surface plasmons in InAs by time-resolved infrared nanospectroscopy[J]. Nano Letters, 2014, 14(8): 4529-4534.

【26】Yang C Y, Chia C T, Chen H Y, et al. Ultrafast carrier dynamics in GaN nanorods[J]. Applied Physics Letters, 2014, 105(21): 212105.

【27】Fang Y, Yang J Y, Xiao Z G, et al. Ultrafast all-optical modulation in Fe-doped GaN at 1.31 and 1.55 μm with high contrast and ultralow power[J]. Applied Physics Letters, 2017, 110(16): 161902.

【28】Galeckas A, Linnros J, Frischholz M, et al. Optical characterization of excess carrier lifetime and surface recombination in 4H/6H-SiC[J]. Applied Physics Letters, 2001, 79(3): 365-367.

【29】Mitchel W C, Mitchell W D, Fang Z Q, et al. Electrical properties of unintentionally doped semi-insulating and conducting 6H-SiC[J]. Journal of Applied Physics, 2006, 100(4): 043706.

【30】Mitchel W C, Mitchell W D, Landis G, et al. Vanadium donor and acceptor levels in semi-insulating 4H- and 6H-SiC[J]. Journal of Applied Physics, 2007, 101(1): 013707.

【31】Schneider J, Müller H D, Maier K, et al. Infrared spectra and electron spin resonance of vanadium deep level impurities in silicon carbide[J]. Applied Physics Letters, 1990, 56(12): 1184-1186.

引用该论文

Nie Yao,Wang Youyun,Wu Xueqin,Fang Yu. Ultrafast Carrier Dynamics in n-Type and Semi-Insulating 6H-SiC Crystals[J]. Laser & Optoelectronics Progress, 2019, 56(6): 063201

聂媱,王友云,吴雪琴,方宇. n型与半绝缘6H-SiC晶体的超快载流子动力学[J]. 激光与光电子学进展, 2019, 56(6): 063201

您的浏览器不支持PDF插件,请使用最新的(Chrome/Fire Fox等)浏览器.或者您还可以点击此处下载该论文PDF