液晶与显示, 2018, 33 (4): 317, 网络出版: 2018-08-28   

基于深度卷积神经网络的输电线路可见光图像目标检测

Object detection of transmission line visual images based on deep convolutional neural network
作者单位
1 天津航天中为数据系统科技有限公司(天津市智能遥感信息处理技术企业重点实验室),天津 300301
2 济南汤尼机器人科技有限公司,山东 济南 250101
3 南方电网科学研究院有限责任公司,广东 广州 510080
摘要
为了检测输电线路可见光图像中的塔材、玻璃绝缘子和复合绝缘子,本文采用了一种基于深度卷积神经网络的技术。通过有人直升机搭载高清相机拍摄19条不同的输电线路近600张图片,对图片中的背景、塔材、玻璃绝缘子和复合绝缘子目标进行人工标注及分块,采用数据扩展生成包含15万个样本的输电线路图像库。构造5层深度卷积神经网络,首先用Cifar-100数据集对网络进行预训练,然后用输电线路图像库进行网络调优。本文方法在检测真阳率为90%时,假阳率低于10%,明显优于传统方法,可用于输电线路可见光图像中的塔材、玻璃绝缘子和复合绝缘子检测,检测结果可用于诊断参考或进一步的目标状态分析。可对输电线路可见光图像中的塔材和绝缘子目标进行检测,并可扩展到其它类型目标的检测。
Abstract
A deep convolutional neural network based method is adopted to detect objects such as tower, glass insulator and composite insulator in visible images of transmission lines. About 600 visible images of 19 different transmission lines are captured by manned helicopter with high-definition camera. All of the images are then annotated manually and segmented into blocks with 4 different labels: background, tower, glass insulator and composite insulator. These blocks are then augmented to around 150 000 training samples which comprise the transmission line image dataset. A five-layer deep convolutional neural network is designed and pre-trained by using Cifar-100 dataset, the trained network is then fine-tuned by using transmission line image dataset. The experimental results show that when detection true positive rate is 90%, the false alarm rate is less than 10%, which is obviously superior to the traditional methods. It can be used for the detection of tower, glass insulator and composite insulator in visible images of transmission lines. The detection result can be used as reference for diagnosis or state analysis of transmission lines. This method can be used to detect tower and insulator in visible images of transmission lines, and can be extended to detect other typical objects.
参考文献

[1] ZHAO Z B, LIU N, YUAN Y P. The recognition and localization of insulators based on SIFT and RANSAC [C]//Proceedings of the 3rd International Conference on Multimedia Technology (ICMT-13). Atlantis Press, 2013: 699-706.

[2] 李卫国,叶高生,黄锋,等.基于改进MPEG-7纹理特征的绝缘子图像识别[J].高压电器,2010,46(10):65-68.

    LI W G, YE G S, HUANG F, et al. Recognition of insulator based on developed MPEG-7 texture feature [J]. High Voltage Apparatus, 2010, 46(10): 65-68. (in Chinese)

[3] 韩军,张晶晶,王滨海.基于感知组织的输电线路结构识别方法[J].红外与激光工程,2013,42(12):3458-3463.

    HANJ, ZHANG J J, WANG B H. Method on recognizing the structure of transmission line based on perceptual organization [J]. Infrared and Laser Engineering, 2013, 42(12): 3458-3463. (in Chinese)

[4] 赵俊梅,张利平.绝缘子图像的多种特征提取技术的研究[J].电测与仪表,2013,50(12):37-41.

    ZHAO J M, ZHANG L P. Research on various feature extraction technology of insulator image [J]. Electrical Measurement & Instrumentation, 2013, 50(12): 37-41. (in Chinese)

[5] SZEGEDY C, TOSHEV A, ERHAN D. Deep Neural Networks for object detection [C]//Proceedings of the 27th Annual Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: Curran Associates Inc., 2013: 2553-2561.

[6] KRIZHEVSKY A. Learning multiple layers of features from tiny images [J]. 2009.

[7] SUN Y, WANG X G, TANG X O. Deep learning face representation from predicting 10,000 classes [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA: IEEE, 2014: 1891-1898.

[8] WANG T, WU D J, COATES A, et al. End-to-end text recognition with convolutional neural networks [C]//Proceedings of the 21st International Conference on Pattern Recognition. Tsukuba, Japan: IEEE, 2012: 3304-3308.

[9] 黄文博,王珂,燕杨.彩色视网膜眼底图像血管自动检测方法[J].光学 精密工程,2017,25(5):1378-1386.

    HUANG W B, WANG K, YAN Y. Automatic detection method of blood vessel for color retina fundus images [J]. Optics and Precision Engineering, 2017, 25(5): 1378-1386. (in Chinese)

[10] 刘智,黄江涛,冯欣.构建多尺度深度卷积神经网络行为识别模型[J].光学 精密工程,2017,25(3):799-805.

    LIU Z, HUANG J T, FENG X. Action recognition model construction based on multi-scale deep convolution neural network [J]. Optics and Precision Engineering, 2017, 25(3): 799-805. (in Chinese)

[11] LECUN Y, HUANG F J, BOTTOU L. Learning methods for generic object recognition with invariance to pose and lighting [C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE, 2004, 2: II-97-II-104.

[12] LI F F, FERGUS R, PERONA P. Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories [J]. Computer vision and Image understanding, 2007, 106(1): 59-70.

[13] DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009: 248-255.

[14] RUSSELL B C, TORRALBA A, MURPHY K P, et al. LabelMe: A database and web-based tool for image annotation [J]. International Journal of Computer Vision, 2008, 77(1/3): 157-173.

[15] LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition [J]. Neural Computation, 1989, 1(4): 541-551.

[16] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: ACM, 2012: 1097-1105.

[17] JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe: Convolutional architecture for fast feature embedding [C]//Proceedings of the 22nd ACM International Conference on Multimedia. Orlando, Florida: ACM, 2014: 675-678.

[18] FAN R E, CHANG K W, HSIEH C J, et al. LIBLINEAR: A library for large linear classification [J]. Journal of Machine Learning Research, 2008, 9(8): 1871-1874.

[19] LOWE D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

[20] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection [C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005: 886-893.

周筑博, 高佼, 张巍, 王晓婧, 张静. 基于深度卷积神经网络的输电线路可见光图像目标检测[J]. 液晶与显示, 2018, 33(4): 317. ZHOU Zhu-bo, GAO Jiao, ZHANG Wei, WANG Xiao-jing, ZHANG Jing. Object detection of transmission line visual images based on deep convolutional neural network[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(4): 317.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!