强激光与粒子束, 2015, 27 (9): 094002, 网络出版: 2015-11-30  

典型卫星轨道辐射环境及在轨软错误率预计模型分析

Radiation environment of typical satellite orbits and on-orbit soft error rate prediction model analysis
作者单位
1 工业和信息化部电子第五研究所, 电子元器件可靠性物理及其应用技术重点实验室, 广州 510610
2 华南理工大学 电子与信息学院, 广州 510641
摘要
使用最新版本的Space Radiation 7.0软件对典型卫星轨道(包括地球同步轨道、中地轨道和低地轨道)的空间辐射环境进行提取和计算,分析不同空间天气和屏蔽条件下的轨道离子通量-能量谱和通量-线性能量沉积(LET)谱特点。以一款SOI SRAM为例,结合地面加速器重离子试验获得的单粒子翻转截面-LET值关系曲线,预计该器件的在轨软错误率(SER),并分析关键参数对预计结果的影响规律和内在机理。结果表明,使用Space Radiation软件的四种输入模式获得的预计结果可相差5倍左右;灵敏区厚度的增大导致在轨SER降低数个数量级,原因为灵敏区厚度的设置与灵敏区平均投影面积和符合条件的空间离子通量的大小直接相关;漏斗长度的大小对预计结果有一定的影响。最后,对SER预计模型的适用性和发展趋势进行了讨论。
Abstract
The space radiation environments of typical satellite orbits including geostationary orbit, medium earth orbit, and low earth orbit are extracted and calculated using the latest version of Space Radiation 7.0 toolkit. The ion flux-energy spectrums and flux-LET spectrums under different space weather and shielding conditions are analyzed to reveal the characteristics. Taking an SOI SRAM as an example, combining the SEU cross section versus LET relationship obtained by accelerator-based heavy ions testing, the on-orbit soft error rate is predicted. The influence trend and inner mechanism of key parameters on the prediction results are analyzed. Following results are concluded. Four input modes of Space Radiation software result into soft error rates with difference up to about five orders. The on-orbit soft error rate decreases by several orders of magnitude as the thickness of the sensitive volume increases, which is attributed to the fact that the thickness of the sensitive volume is directly related to the average projected area of the sensitive volume and the qualified space ion flux. The prediction result also depends on the funnel length. Finally, the applicability and development of soft error rate prediction model are discussed.
参考文献

[1] Binder D, Smith E C, Holman A B. Satellite anomalies from galactic cosmic rays[J]. IEEE Trans on Nucl Sci, 1975, 22(6): 2675-2680.

[2] Bedingfield K L, Leach R D, Alexander M B. Spacecraft system failures and anomalies attributed to the natural space environment[R]. NASA Reference Publication 1390, 1996.

[3] Ecoffet R. On-orbit anomalies: Investigations and root cause determination[C]//IEEE NSREC 2011 Short Course Notes, Section IV. 2011.

[4] Dodd P, Shaneyfelt M, Schwank J, et al. Current and future challenges in radiation effects on CMOS electronics[J]. IEEE Trans on Nucl Sci, 2010, 57(4): 1747-1763.

[5] 罗尹虹, 张凤祁, 郭红霞, 等. 纳米DDR SRAM器件重离子单粒子效应试验研究[J]. 强激光与粒子束, 2013, 25(10): 2705-2710.

    Luo Yinhong, Zhang Fengqi, Guo Hongxia, et al. Experimental study on heavy-ion single event effect on nanometer DDR SRAM. High Power Laser and Particle Beams, 2013, 25(10): 2705-2710

[6] Space Radiation Associates. Space radiation[DB/OL]. http://www.spacerad.com/.2013.

[7] 薛玉雄, 曹洲, 杨世宇, 等. 基于Space Radiation 5.0软件平台分析典型GEO空间辐射环境[J]. 航天器环境工程, 2007, 24(5): 291-295.

    Xue Yuxiong, Cao Zhou, Yang Shiyu, et al. Analyses of typical GEO space radiation environment using software package Space Radiation 5.0. Spacecraft Environment Engineering, 2007, 24(5): 291-295

[8] Pickel J C, Blandford J T. Cosmic ray induced errors in MOS memory cells[J]. IEEE Trans on Nucl Sci, 1978, 25(6): 1166-1171.

[9] Edmonds L D. A distribution function for double-bit upsets[J]. IEEE Trans on Nucl Sci, 1989, 36(2): 1344-1346.

[10] Zhang Zhangang, Liu Jie, Hou Mingdong, et al. Large energy-loss straggling of swift heavy ions in ultra-thin active silicon layers[J]. Chin Phys B, 2013, 22: 096103.

[11] Petersen E L, Pickel J C, Adams J H, et al. Rate prediction for single event effects—a critique[J]. IEEE Trans on Nucl Sci, 1992, 39(6): 1577-1599.

[12] Petersen E L, Pickel J C, Smith E C, et al. Geometrical factors in SEE rate calculations[J]. IEEE Trans on Nucl Sci, 1993, 40(6): 1888-1909.

[13] Pickel J C. Single-event effects rate prediction[J]. IEEE Trans on Nucl Sci, 1996, 43(2): 483-495.

[14] Tang H H. SEMM-2: A new generation of single-event-effect modeling tools[J]. IBM Jour Res Dev, 2008, 52(3): 233-244.

[15] Tang H H, Cannon E H. SEMM-2: a modeling system for single event upset analysis[J]. IEEE Trans on Nucl Sci, 2004, 51(6): 3342-3348.

[16] Weller R A, Mendenhall M H, Reed R A, et al. Monte Carlo simulation of single event effects[J]. IEEE Trans on Nucl Sci, 2010, 57(4): 1726-1746.

[17] Raine M, Hubert G, Gaillardin M, et al. Monte Carlo prediction of heavy ion induced MBU sensitivity for SOI SRAMs using radial ionization profile[J]. IEEE Trans on Nucl Sci, 2011, 58(6): 2607-2613.

[18] Adams J H, Barghouty A F, Mendenhall M H, et al. CREME: The 2011 revision of the cosmic ray effects on micro-electronics code[J]. IEEE Trans on Nucl Sci, 2012, 59(6): 3141-3147.

张战刚, 雷志锋, 恩云飞. 典型卫星轨道辐射环境及在轨软错误率预计模型分析[J]. 强激光与粒子束, 2015, 27(9): 094002. Zhang Zhan’gang, Lei Zhifeng, En Yunfei. Radiation environment of typical satellite orbits and on-orbit soft error rate prediction model analysis[J]. High Power Laser and Particle Beams, 2015, 27(9): 094002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!