光学学报, 2014, 34 (9): 0916003, 网络出版: 2014-08-15   

水热腐蚀时间对铁钝化多孔硅表面形貌和光致发光的影响

Impact of Hydrothermal Etching Time on Porous Morphology and Photoluminescence of Iron-Passivated Porous Silicon
作者单位
1 闽南师范大学物理与信息工程学院, 福建 漳州 363000
2 闽南师范大学化学与环境学院, 福建 漳州 363000
摘要
采用水热腐蚀法制备了4个腐蚀时间不同的铁钝化多孔硅样品,铁钝化多孔硅样品表面呈海绵结构,随着腐蚀时间增加,样品表面的平整度下降,腐蚀孔尺寸差别有增大的趋势。在250 nm光激发下,样品发光峰位于620 nm附近,半峰全宽约130 nm。腐蚀时间从10 min增加到40 min,4个样品的发光峰并未出现定向的红移或蓝移。结合样品傅里叶变换红外吸收光谱的结果,铁钝化多孔硅的光致发光行为可归因于量子限制发光中心作用,相应的辐射复合发光中心为非桥氧空穴。
Abstract
Hydrothermal etching method is employed to prepare four Iron-passivated porous silicon (IP-Si) samples of different etching time. The sponge-like morphology of the samples is observed by scanning electron microscope (SEM), and larger diameter difference of etching holes and lower morphology smooth are found as a result of increasing etching time. Under 250 nm excitation, all samples emit strong orange light with peak around 620 nm and full width at half maximum (FWHM) of 130 nm. And no correlation between photoluminescence peaks and etching time is found. Together with the result of Fourier transform infrared spectroscopy study, the physical mechanism for the photoluminescence of IP-Si is interpreted by using the quantum confinement-luminescence center model, and the non-bridging oxygen hole center is ascribed as the radiative recombination luminescence center.
参考文献

[1] A G Cullis, L T Canham, P D J Calcott. The structural and luminescence properties of porous silicon [J]. J Appl Phys, 1997, 82(3): 909-965.

[2] 丁文革, 卢云霞, 孙雪, 等. 纳米硅结构薄膜光致发光的温度依赖特性[J]. 光学学报, 2012, 32(8): 0831002.

    Ding Wenge, Lu Yunxia, Sunxue, et al.. Temperature-dependent photoluminescence of silicon-nanostructure thin film [J]. Acta Optica Sinica, 2012, 32(8): 0831002.

[3] C Q Li, C Y Zhang, Z S Huang, et al.. Assembling of silicon nanoflowers with significantly enhanced second harmonic generation using silicon nanospheres fabricated by femtosecond laser ablation [J]. J Phys Chem C, 2013, 117(46): 24625-24631.

[4] 张荣君, 陈一鸣, 郑玉祥, 等. 硅发光研究与进展[J]. 中国激光, 2009, 36(2): 269-275.

    Zhang Rongjun, Chen Yiming, Zheng Yuxiang, et al.. Research and progress of silicon luminescence [J]. Chinese J Lasers, 2009, 36(2): 269-275.

[5] L T Canham. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers [J]. Appl Phys Lett, 1990, 57(10): 1046-1048.

[6] G G Qin, Y Q Jia. Mechanism of the visible luminescence in porous silicon [J]. Solid State Commun, 1993, 86(9): 559-563.

[7] X J Li, D L Zhu, Q W Chen, et al.. Strong and nondegrading-luminescent porous silicon prepared by hydrothermal etching [J]. Appl Phys Lett, 1999, 74(3): 389-391.

[8] 陈景东, 赵韦人, 张婷. 铁钝化多孔硅紫外辐照下的发光稳定性研究[J]. 热处理技术与装备, 2008, 29(5): 33-36.

    Chen Jingdong, Zhao Weiren, Zhang Ting. Photoluminescence stability of iron-passivated porous silicon under ultraviolet light irradiation [J]. Heat Treat Technol Equip, 2008, 29(5): 33-36.

[9] Y H Zhang, X J Li, L Zheng, et al.. Nondegrading photoluminescence in porous silicon [J]. Phys Rev Lett, 1998, 81(8): 1710-1713.

[10] 陈景东, 张婷. 铁钝化多孔硅的制备及光致发光机理研究[J]. 发光学报, 2014, 35(2): 184-189.

    Chen Jingdong, Zhang Ting. Fabrication and photoluminescence mechanism of iron-passivated porous silicon [J]. Chin J Lumin, 2014, 35(2): 184-189.

[11] X L Zheng, W Wang, H C Chen. Anomalous temperature dependencies of photoluminescence for visible-light-emitting porous Si [J]. Appl Phys Lett, 1992, 60(8): 986-988.

[12] S M Prokes, O J Glembocki. Role of interfacial oxide-related defects in the red-light emission in porous silicon [J]. Phys Rev B, 1994, 49(3): 2238-2241.

[13] T Y Gorbach, G Y Rudko, P S Smertenko, et al.. Simultaneous changes in the photoluminescence, infrared absorption and morphology of porous silicon during etching by HF [J]. Semicond Sci Tech, 1996, 11(4): 601-606.

[14] S Shih, K H Jung, D L Kwong, et al.. Photoluminescence study of anodized porous Si after HF vapor phase etching [J]. Appl Phys Lett, 1993, 62(16): 1904-1906.

[15] T Matsumoto, A I Belogorokhov, L I Belogorokhova, et al.. The effect of deuterium on the optical properties of free-standing porous silicon layers [J]. Nanotechnology, 2000, 11(4): 340-347.

[16] 张丽珠, 毛晋昌, 张伯蕊, 等. 大气中存放的多孔硅的红外吸收与光致发光的时间演化[J]. 半导体学报, 1992, 13(11): 715-719.

    Zhang Lizhu, Mao Jinchang, Zhang Borui, et al.. Time evolution of the infrared absorption and photoluminescence of porous silicon in air [J]. Chin J Semicond, 1992, 13(11): 715-719.

[17] A G Revesz. The role of hydrogen in SiO2 films on silicon [J]. J Electrochem Soc, 1979, 126(1): 122-130.

[18] M Shuji, Y Toshihisa, S Yasushi, et al.. Various types of nonbridging oxygen hole center in high-purity silica glass [J]. J Appl Phys, 1990, 68(3): 1212-1217.

[19] N Kaya, O Yoshimichi, H Yoshimasa. Gamma-ray induced 2 eV optical absorption band in pure silica core fibers [J]. Jpn J Appl Phys, 1987, 26(6A): L1009-L1011.

陈景东, 张婷, 汪庆祥. 水热腐蚀时间对铁钝化多孔硅表面形貌和光致发光的影响[J]. 光学学报, 2014, 34(9): 0916003. Chen Jingdong, Zhang Ting, Wang Qingxiang. Impact of Hydrothermal Etching Time on Porous Morphology and Photoluminescence of Iron-Passivated Porous Silicon[J]. Acta Optica Sinica, 2014, 34(9): 0916003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!