中国激光, 2014, 41 (10): 1008001, 网络出版: 2014-08-15   

差动共焦显微边缘轮廓检测与定位方法

Differential Confocal Microscopy for Edge Contour Detection and Location
作者单位
北京理工大学光电学院, 北京 100081
摘要
为了实现高效、准确的检测和定位微结构如光刻掩模版的边缘轮廓,提出了一种差动共焦显微(DCM)边缘轮廓检测方法,并对该方法进行了原理仿真分析和实验验证。该方法具有在焦点的过零阶跃触发特性。利用该特性,该方法可以实时得到样品二值化边缘轮廓图像,极大地提高了边缘轮廓检测效率。理论分析和仿真表明,该方法边缘定位准确,不受边缘形状、方向和样品有效反射率的影响,可以有效抑制噪声和干扰。5 μm周期台阶标准样品周期测量对比实验表明,该方法所得边缘轮廓能够实现高精度的横向尺寸测量,因此能够用于微结构的快速工业边缘轮廓成像检测。
Abstract
In order to realize high-efficiency and high-accuracy edge contours detection and location for micro structures such as photolithographic mask, a differential confocal microscopy (DCM) for edge contour detection and location is proposed and verified by simulation analysis and experiments. The proposed method has an axial response characteristic of zero-cross step trigger at focal point. Utilizing the step trigger characteristic, the proposed method can realize the real-time sample edge contour imaging in the form of binary image, and greatly improve the efficiency of edge contour detection. Theoretical analysis and computer simulations show that the proposed method can precisely detect and locate the edge contour without being affected by edge shape and direction, and has the ability of suppressing the interference caused by multiplicative and additive noise. Experimental results indicate that period measurement difference of 5 μm-period atomic force microscope standard step between the proposed method and atomic force microscope is only 2 nm. So the proposed method can be used for the real time, precise and rapid industrial edge contour inspection for microstructures.
参考文献

[1] 柳忠尧, 闫聚群, 张蕊, 等. 用于线宽测量的偏振干涉共焦显微测量方法[J]. 计量学报, 2005, 26(2): 115-119.

    Liu Zhongyao, Yan Juqun, Zhang Rui, et al.. A system for measurement of line width by combining polarization interferometry with confocal microscopy[J]. Acta Metrologica Sinica, 2005, 26(2): 115-119.

[2] Xu D J, Takis K. Detection and localization of edge contours[C]. SPIE, 2003, 5097: 79-89.

[3] 姜黎, 吴伟仁, 张之敬, 等. 微小型结构件显微图像边缘的自动识别[J]. 光学 精密工程, 2013, 21(1): 224-231.

    Jiang Li, Wu Weiren, Zhang Zhijing, et al.. Automatic detection of micro image edges for micro accessories[J]. Optics and Precision Engineering, 2013, 21(1): 224-231.

[4] 吴礼刚, 李祖盼, 王训四, 等. 红外硫系玻璃内部宏观缺陷透视成像检测系统[J]. 中国激光, 2012, 39(1): 0108001.

    Wu Ligang, Li Zupan, Wang Xunsi, et al.. Internal macroscopic defects perspective imaging detection system for infrared chalcogenide glasses[J]. Chinese J Lasers, 2012, 39(1): 0108001.

[5] Yin C Y, Lin D J, Liu Z Y, et al.. New advance in confocal microscopy[J]. Meas Sci & Technol, 2006, 17(3): 596-600.

[6] 王昭, 朱升成, 谭玉山, 等. 集成光纤束并行共焦测量[J]. 中国激光, 2005, 32(1): 105-109.

    Wang Zhao, Zhu Shengcheng, Tan Yushan, et al.. Parallel confocal measurement though integrated optical fiber bundle plate[J]. Chinese J Lasers, 2005, 32(1): 105-109.

[7] 闫聚群, 柳忠尧, 林德教, 等. 大台阶高度测量的外差共焦方法[J]. 中国激光, 2005, 32(3): 389-393.

    Yan Juqun, Liu Zhongyao, Lin Dejiao, et al.. Method of heterodyne confocal microscopy measuring big step height[J]. Chinese J Lasers, 2005, 32(3): 389-393.

[8] 张曼, 唐志列, 谭治良, 等. 一种实现共焦显微镜空间微分成像的新方法[J]. 光学学报, 2012, 32(3): 0318001.

    Zhang Man, Tang Zhilie, Tan Zhiliang, et al.. New method of spatial differential imaging with confocal microscope[J]. Acta Optica Sinica, 2012, 32(3): 0318001.

[9] 涂龙, 余锦, 樊仲维, 等. 基于数字微镜的并行激光共焦显微检测技术研究[J]. 激光与光电子学进展, 2013, 50(10): 101702.

    Tu Long, Yu Jin, Fan Zhongwei, et al.. Research on the technology of parallel laser confocal microscopy detection based on digital micromirror device[J]. Laser & Optoelectronics Progress, 2013, 50(10): 101702.

[10] Taehoon K, Taejoong K, Seungwoo L, et al.. Optimum conditions for high-quality 3D reconstruction in confocal scanning microscopy[C]. SPIE, 2006, 6090: 181-187.

[11] 余卿, 余晓芬, 崔长彩. 单光源双光路激光并行共焦测量系统设计[J]. 光学 精密工程, 2013, 21(2): 281-286.

    Yu Qing, Yu Xiaofen, Cui Changcai. Design of laser parallel confocal measurement system with single source and dual beam paths[J]. Optics and Precision Engineering, 2013, 21(2): 281-286.

[12] Wang Y F, Kuang C F, Xiu P, et al.. A lateral differential confocal microscopy for accurate detection and localization of edge contours[J]. Opt & Lasers in Eng, 2014, 53: 12-18.

[13] Zhao W Q, Tan J B, Qiu L R. Bipolar absolute differential confocal approach to higher spatial resolution[J]. Opt Express, 2004, 12(21): 5013-5021.

[14] Zhao W Q, Tan J B, Qiu L R, et al.. SABCMS, a new approach to higher lateral resolution of laser probe measurement system[J]. Sensors and Actuators A, 2005, 120(1): 17-25.

[15] Zhao W Q, Tan J B, Qiu L R. Tri-heterodyne confocal microscope with axial superresolution and higher SNR[J]. Opt Express, 2004, 12(21): 5191-5197.

[16] Shigeharu K, Tony W. Effect of axial pinhole displacement in confocal microscopes[J]. Appl Opt, 1993, 32(13): 2257-2261.

[17] Wilson T. Confocal Microscopy[M]. London: Academic Press, 1990. 1-64.

[18] Gu M. Three-Dimensional Imaging in Confocal Microscopes[M]. Singapore: World Scientific Publishing Co Pte Ltd, 1996. 51.

刘大礼, 王允, 邱丽荣, 赵维谦. 差动共焦显微边缘轮廓检测与定位方法[J]. 中国激光, 2014, 41(10): 1008001. Liu Dali, Wang Yun, Qiu Lirong, Zhao Weiqian. Differential Confocal Microscopy for Edge Contour Detection and Location[J]. Chinese Journal of Lasers, 2014, 41(10): 1008001.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!