激光与光电子学进展, 2020, 57 (19): 192602, 网络出版: 2020-09-23  

基于非对称入射和偏振调制的四光束干涉光场 下载: 847次

Four-Beam Interferometric Light Field Based on Asymmetric Incidence and Polarization Modulation
作者单位
1 中国科学院光电技术研究所微细加工光学技术国家重点实验室, 四川 成都 610209
2 中国科学院大学, 北京 100049
引用该论文

彭伏平, 严伟, 李凡星, 王思沫, 杜佳林, 杜婧. 基于非对称入射和偏振调制的四光束干涉光场[J]. 激光与光电子学进展, 2020, 57(19): 192602.

Fuping Peng, Wei Yan, Fanxing Li, Simo Wang, Jialin Du, Jing Du. Four-Beam Interferometric Light Field Based on Asymmetric Incidence and Polarization Modulation[J]. Laser & Optoelectronics Progress, 2020, 57(19): 192602.

参考文献

[1] Burrow G M, Gaylord T K. Multi-beam interference advances and applications: nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures[J]. Micromachines, 2011, 2(2): 221-257.

[2] Wang L, Wang Z H, Yu Y H, et al. Laser interference fabrication of large-area functional periodic structure surface[J]. Frontiers of Mechanical Engineering, 2018, 13(4): 493-503.

[3] Hutton D M. Silicon earth: introduction to the microelectronics and nanotechnology revolution[J]. Kybernetes, 2011, 40(5/6): 934-936.

[4] Chen A, Chua S J, Chen P, et al. Fabrication of sub-100 nm patterns in SiO2 templates by electron-beam lithography for the growth of periodic III-V semiconductor nanostructures[J]. Nanotechnology, 2006, 17(15): 3903-3908.

[5] Xu X S, Chen H D, Xiong Z G, et al. Fabrication of photonic crystals on several kinds of semiconductor materials by using focused-ion beam method[J]. Thin Solid Films, 2007, 515(22): 8297-8300.

[6] Xia D Y, Ku Z, Lee S C, et al. Nanostructures and functional materials fabricated by interferometric lithography[J]. Advanced Materials (Deerfield Beach, Fla.), 2011, 23(2): 147-179.

[7] Vala M, Homola J. Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays[J]. Optics Express, 2014, 22(15): 18778-18789.

[8] 王康, 金玉, 刘昱玮, 等. 多形貌多周期微纳米复合结构的制备及表征[J]. 激光与光电子学进展, 2019, 56(12): 120501.

    Wang K, Jin Y, Liu Y W, et al. Preparation and characterization of multi-morphological and multi-periodical micro-nano composite structures[J]. Laser & Optoelectronics Progress, 2019, 56(12): 120501.

[9] 张伟, 刘维萍, 顾小勇, 等. 多光束激光干涉光刻图样[J]. 强激光与粒子束, 2011, 23(12): 3157-3162.

    Zhang W, Liu W P, Gu X Y, et al. Multi-beam laser interference lithography pattern[J]. High Power Laser and Particle Beams, 2011, 23(12): 3157-3162.

[10] Lutkenhaus J, George D, Garrett D, et al. Holographic formation of compound photonic crystal and nano-antenna templates through laser interference[J]. Journal of Applied Physics, 2013, 113(10): 103103.

[11] Sakakura M, Sawano T, Shimotsuma Y, et al. Fabrication of three-dimensional 1×4 splitter waveguides inside a glass substrate with spatially phase modulated laser beam[J]. Optics Express, 2010, 18(12): 12136-12143.

[12] Yuan L L, Herman P R. Laser scanning holographic lithography for flexible 3D fabrication of multi-scale integrated nano-structures and optical biosensors[J]. Scientific Reports, 2016, 6: 22294.

[13] Zhao L, Wang Z, Zhang J, et al. Antireflection silicon structures with hydrophobic property fabricated by three-beam laser interference[J]. Applied Surface Science, 2015, 346: 574-579.

[14] 颜跃武, 安俊明, 张家顺, 等. 硅基二氧化硅波导阵列相位控制芯片[J]. 光子学报, 2019, 48(4): 0423001.

    Yan Y W, An J M, Zhang J S, et al. Chip of phase control arrays based on silica on silicon[J]. Acta Photonica Sinica, 2019, 48(4): 0423001.

[15] Kumar M, Joseph J. Digitally reconfigurable complex two-dimensional dual-lattice structure by optical phase engineering[J]. Applied Optics, 2014, 53(7): 1333-1338.

[16] Lutkenhaus J, George D, Moazzezi M, et al. Digitally tunable holographic lithography using a spatial light modulator as a programmable phase mask[J]. Optics Express, 2013, 21(22): 26227-26235.

[17] Hassan S, Sale O, Lowell D, et al. Holographic fabrication and optical property of graded photonic super-crystals with a rectangular unit super-cell[J]. Photonics, 2018, 5(4): 34.

[18] Behera S, Kumar M, Joseph J. Submicrometer photonic structure fabrication by phase spatial-light-modulator-based interference lithography[J]. Optics Letters, 2016, 41(8): 1893-1896.

[19] 吴晓. 干涉偏差对四束圆偏振光干涉的影响[J]. 激光与光电子学进展, 2018, 55(6): 061405.

    Wu X. Influence of interference deviation on four-beam interference with circular polarization[J]. Laser & Optoelectronics Progress, 2018, 55(6): 061405.

[20] 马丽娜, 张锦, 蒋世磊, 等. 入射光束角度及强度偏差对多光束干涉光刻结果的影响[J]. 光子学报, 2015, 44(10): 1011003.

    Ma L N, Zhang J, Jiang S L, et al. Influence on patterns quality of multi-beam interference lithography caused by the deviations of incidence azimuth angle and intensity of light[J]. Acta Photonica Sinica, 2015, 44(10): 1011003.

[21] Voisiat B, Zwahr C, Lasagni A F. Growth of regular micro-pillar arrays on steel by polarization-controlled laser interference patterning[J]. Applied Surface Science, 2019, 471: 1065-1071.

[22] Hu Y W, Wang Z B, Weng Z K, et al. Bio-inspired hierarchical patterning of silicon by laser interference lithography[J]. Applied Optics, 2016, 55(12): 3226-3232.

[23] Xu J, Wang Z B, Zhang Z A, et al. Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography[J]. Journal of Applied Physics, 2014, 115(20): 203101.

彭伏平, 严伟, 李凡星, 王思沫, 杜佳林, 杜婧. 基于非对称入射和偏振调制的四光束干涉光场[J]. 激光与光电子学进展, 2020, 57(19): 192602. Fuping Peng, Wei Yan, Fanxing Li, Simo Wang, Jialin Du, Jing Du. Four-Beam Interferometric Light Field Based on Asymmetric Incidence and Polarization Modulation[J]. Laser & Optoelectronics Progress, 2020, 57(19): 192602.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!