光子学报, 2018, 47 (6): 0614003, 网络出版: 2018-09-07   

线偏振光和圆偏振光下ZrO2和Al2O3陶瓷材料的飞秒激光烧蚀性能

Femtosecond Laser Ablation Properties of ZrO2 and Al2O3 Ceramics at Linear and Circular Polarized Light
作者单位
1 西安建筑科技大学 材料与矿资学院 功能材料研究所, 西安 710055
2 西北工业大学 凝固技术国家重点实验室, 西安 710072
3 西安中科微精光子制造科技有限公司, 西安 710199
摘要
将不同脉冲数的飞秒激光作用于陶瓷材料表面, 研究了线偏振和圆偏振激光对氧化锆和氧化铝陶瓷材料烧蚀阈值的影响, 利用光学显微镜和扫描电子显微镜分析了烧蚀坑表面形貌, 利用激光扫描共聚焦显微镜确定了烧蚀坑深度.结果表明:两种材料在线偏振光下的饱和烧蚀阈值均小于在圆偏振光下的值; 当偏振态相同时, 氧化锆饱和烧蚀阈值小于氧化铝.随脉冲数增加, 线偏振和圆偏振光下氧化锆烧蚀坑表面结构均由无序向有序发展, 出现了周期性环形波纹结构和纳米孔洞阵列.与线偏振光相比, 圆偏振光对烧蚀坑深度的作用更明显, 且烧蚀坑表面形貌对能量密度变化比较敏感, 更容易产生周期性结构.
Abstract
The effects of linearly polarized and circularly polarized femtosecond laser on the ablation threshold of ZrO2 and Al2O3 ceramics at different pulse numbers were investigated. The surface morphology of the ablated craters was analyzed by optical microscopy and scanning electron microscopy and the depth of the ablated craters was measured by laser scanning confocal microscopy. The results show that the saturation ablation threshold of the two materials at linearly polarized light is smaller than that of circularly polarized light. The saturation ablation threshold of ZrO2 is smaller than that of Al2O3 at the same polarization state. With the increase of pulse numbers, the surface structures of ZrO2 ablation craters develop from disorder to order, and periodic layer annular ripple structures and nanohole arrays are observed at linear and circular polarized light. Compared with linearly polarized light, the effect of circularly polarized light on the depth of ablated craters is stronger, and surface morphology is more sensitive to the change of laser fluence, at the same time, the periodic structures are more obvious.
参考文献

[1] 张军战, 王禹茜, 张颖, 等. 飞秒激光进给速度对TiC陶瓷微孔加工的影响[J]. 光学精密工程, 2015, 23(6): 1565-1571.

    ZHANG Jun-zhan, WANG Yu-qian, ZHANG Ying, et al. Effect of feeding speed on micro-hole drilling in TiC ceramic by femtosecond laser[J]. Optics and Precision Engineering, 2015, 23(6): 1565-1571.

[2] 姜涛. 功能性微结构表面的超短脉冲激光加工技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2012: 1-4.

    JIANG Tao. Research on ultrashort laser texturing of fuctionality micro-structured surfaces[D]. Harbin: Harbin Institute of Technology, 2012: 1-4.

[3] 肖荣诗, 张寰臻, 黄婷. 飞秒激光加工最新研究进展[J]. 机械工程学报, 2016, 52(17): 176-186.

    XIAO Rong-shi, ZHANG Huan-zhen, HUANG Ting. Recent progress in femtosecond pulsed laser processing research[J]. Journal of Mechanical Engineering, 2016, 52(17): 176-186

[4] 夏博, 姜澜, 王素梅,等. 飞秒激光微孔加工[J]. 中国激光, 2013, 40(2): 1-12.

    XIA Bo, JIANG Lan, WANG Su-mei,et al. Femtosecond laser drilling of micro-holes[J]. Chinese Journal of Lasers, 2013, 40(2): 1-12.

[5] SERBIN J, OVSIANIKOV A, CHICHKOV B. Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties[J]. Optics Express, 2004, 12(21): 5221.

[6] GITTARD S D, NARAYAN R J. Laser direct writing of micro- and nano-scale medical devices[J]. Expert Review of Medical Devices, 2010, 7(3): 343-356.

[7] 李晨, 程光华. 线性、径向和环向偏振飞秒激光诱导非晶合金周期性表面结构[J]. 光子学报, 2016, 45(8): 0832001.

    LI Chen, CHENG Guang-hua. Linearly, radially and azimuthally polarized femtosecond laser induced periodic surface structures on amorphous alloy[J]. Acta Photonica Sinica, 2016, 45(8): 0832001.

[8] ZHAO Quan-zhong, MALZER S, WANG Li-jun. Formation of subwavelength periodic structures on tungsten induced by ultrashort laser pulses[J]. Optics Letters, 2007, 32(13): 1932.

[9] REIF J, VARLAMOVA O, COSTACHE F. Femtosecond laser induced nanostructure formation: self-organization control parameters[J]. Applied Physics A, 2008, 92(4): 1019-1024.

[10] 张成云, 满文庆, 揭海, 等. 飞秒激光诱导Al2O3陶瓷表面微纳结构及润湿特性研究[J]. 广州大学学报(自然科学版), 2017,(4): 22-26.

    ZHANG Cheng-yun, MAN Wen-qing, JIE Hai, et al. Study on micro-nano structure and wetting characteristics of Al2O3 ceramic induced by femtosecond laser[J]. Journal of Guangzhou University (Natural Science Edition), 2017,(4): 22-26.

[11] RAN Ling-ling, GUO Zhong-yi, QU Shi-liang. Self-organized periodic surface structures on ZnO induced by femtosecond laser[J]. Applied Physics A, 2010, 100(2): 517-521.

[12] DUFFT D, ROSENFELD A, DAS S K, et al. Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO[J]. Journal of Applied Physics, 2009, 105(3): 3688.

[13] REIF J, VARLAMOVA O, UHLIG S, et al. On the physics of self-organized nanostructure formation upon femtosecond laser ablation[J]. Applied Physics A, 2014, 117(1): 179-184.

[14] WANG Lei,CHEN Qi-dai, CAO Xiao-wen, et al. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing[J]. Light Science & Applications, 2017, 6(12): e17112.

[15] ZHONG Min-jian, GUO Guang-lei, YANG Jun-yi, et al. Femtosecond pulse laser-induced self-organized nanostructures on the surface of ZnO crystal[J]. Chinese Physics B, 2007, 89(3): 707-709.

[16] WANG Lei,XU Bin-bin,CAO Xiao-wen, et al. Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses[J]. Optica, 2017, 4(6): 637-642.

[17] LIU Yi, BRELET Y, HE Zhan-bing, et al. Laser-induced periodic annular surface structures on fused silica surface[J]. Applied Physics Letters, 2013, 102(25): 3688.

[18] 吴东江, 姚龙元, 马广义,等. 偏振态对飞秒激光加工石英玻璃表面质量的影响[J]. 强激光与粒子束, 2014, 26(2): 31-37.

    WU Dong-jiang, YAO Long-jiang, MA Guang-yi, et al. Influence of polarization state on the surface quality of quartz glass processed by femtosecond laser[J]. High Power Laser and Particle Beams, 2014, 26(2): 31-37.

[19] KIM S H, SOHN I B, JEONG S. Parallel ripple formation during femtosecond laser grooving of ceramic[J]. Applied Physics A, 2011, 103(4): 1053-1057.

[20] TEMNOV V V, SOKOLOWSKI T K, ZHOU P, et al. Multiphoton ionization in dielectrics: Competition of circular and linear polarization[J]. Physical Review Letters, 2006, 97(23): 237403.

[21] 张天宇, 孔斌, 陈敏孙, 等. 陶瓷涂层加固铝合金薄板的抗激光性能测试[J].红外与激光工程, 2017, 46(6): 0606002.

    ZHANG Tian-yu, KONG Bin, CHEN Min-sun, et al. Anti-laser performance test of aluminum alloy plates reinforced by ceramic coating[J].Infrared and Laser Engineering, 2017, 46(6): 0606002.

[22] MANICONE P F, ROSSI I P, RAFFAELLI L. An overview of zirconia ceramics: basic properties and clinical applications[J]. Journal of Dentistry, 2007, 35(11): 819-826.

[23] PERRIE W, RUSHTON A, GILL M, et al. Characterization of ultrafast microstructuring of alumina (Al2O3)[C]. SPIE, 2005, 5714: 43-52.

[24] 辛建婷, 谭放, 罗国强,等. 多脉冲飞秒激光对锗材料的烧蚀效应[J]. 强激光与粒子束, 2011, 23(7): 1753-1757.

    XIN Jian-ting, TAN Fang, LUO Guo-qiang, et al. Ablation effect of multi pulse femtosecond laser on germanium materials[J]. High Power Laser and Particle Beams, 2011, 23(7): 1753-1757.

[25] 赵清亮, 姜涛, 董志伟, 等. 飞秒激光加工SiC的烧蚀阈值及材料去除机理[J]. 机械工程学报, 2010, 46(21): 173-177.

    ZHAO Qing-liang, JIANG Tao, DONG Zhi-wei, et al. Ablation threshold and material removal mechanisms of SiC processed by femtosecond laser[J]. Journal of Mechanical Engineering, 2010, 46(21): 173-177.

[26] LONZAGA J B, AVANESYAN S M, LANGFORD S C, et al. Color center formation in soda-lime glass with femtosecond laser pulses[J]. Journal of Applied Physics, 2003, 94(7): 4332-4340.

[27] DAS D K, MCDONALD J P, YALISOVE S M, et al. Femtosecond pulsed laser damage characteristics of 7% Y2O3 -ZrO2 thermal barrier coating[J]. Applied Physics A, 2008, 91(3): 421-428.

[28] GMEZ D, GOENAGA I. On the incubation effect on two thermoplastics when irradiated with ultrashort laser pulses: Broadening effects when machining microchannels[J]. Applied Surface Science, 2006, 253(4): 2230-2236.

[29] BULGAKOVA N M, STOIAN R, ROSENFELD A, et al. A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion[J]. Applied Physics A, 2005, 81(2): 345-356.

[30] DU D, LIU X, MOUROU G. Reduction of multi-photon ionization in dielectrics due to collisions[J]. Applied Physics B, 1996, 63(6): 617-621.

[31] JOGLEKAR A P, LIU H, SPOONER G J, et al. A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining[J]. Applied Physics B, 2003, 77(1): 25-30.

[32] HEIROTH S, KOCH J, LIPPERT T, et al. Laser ablation characteristics of yttria-doped zirconia in the nanosecond and femtosecond regimes[J]. Journal of Applied Physics, 2010, 107(1): 1527.

[33] 李晓溪, 贾天卿, 冯东海,等. 超短脉冲激光照射下氧化铝的烧蚀机理[J]. 物理学报, 2004, 53(7): 2154-2158.

    LI Xiao-xi, JIA Tian-qing, FENG Dong-hai, et al. Ablation mechanism of alumina under ultrashort pulsed laser irradiation[J]. Chinese Journal of Physics, 2004, 53(7): 2154-2158.

[34] BEATA Z, NIKITA M, VICTOR T, et al. Time-resolved observation of band-gap shrinking and electron-lattice thermalization within X-ray excited gallium arsenide[J]. Scientific Reports, 2015, 5(3): 1304-1310.

[35] HIRAO K, MIURA K, SAKAKURA M, et al. Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse[J]. Optics Express, 2007, 15(25): 16800.

[36] KIM S H, SOHN I B, JEONG S. Ablation characteristics of aluminum oxide and nitride ceramics during femtosecond laser micromachining[J]. Applied Surface Science, 2009, 255(24): 9717-9720.

[37] VANTHANH K, YUNCAN M, JINHAI S. Fabrication of through holes in silicon carbide using femtosecond laser irradiation and acid etching[J]. Applied Surface Science, 2014. 289: 529-532.

[38] ZHANG Cheng-yun, YAO Jiang-wu, LAN Sheng, et al. Effects of plasma confinement on the femtosecond laser ablation of silicon[J]. Optics Communications, 2013, 308(11): 54-63.

张军战, 张媛敏, 刘永胜, 张颖, 刘乾. 线偏振光和圆偏振光下ZrO2和Al2O3陶瓷材料的飞秒激光烧蚀性能[J]. 光子学报, 2018, 47(6): 0614003. ZHANG Jun-zhan, ZHANG Yuan-min, LIU Yong-sheng, ZHANG Ying, LIU Qian. Femtosecond Laser Ablation Properties of ZrO2 and Al2O3 Ceramics at Linear and Circular Polarized Light[J]. ACTA PHOTONICA SINICA, 2018, 47(6): 0614003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!