激光与光电子学进展, 2018, 55 (8): 081403, 网络出版: 2018-08-13   

大功率640 nm红光半导体激光器的设计及制备 下载: 1088次

Design and Fabrication of High Power 640 nm Red Laser Diodes
作者单位
1 山东华光光电子股份有限公司, 山东 济南 250100
2 济南大学物理科学与技术学院, 山东 济南 250100
3 山东大学晶体材料国家重点实验室, 山东 济南 250100
摘要
设计并制备了一款短波长红光640 nm的大功率半导体激光器。利用金属有机化学气相沉积技术生长了AlGaInP材料的激光器外延层,其中,限制层使用低折射率的AlInP材料,有源区使用张应变的GaInP/AlGaInP量子阱。外延层有源区的光致发光谱出现两个分裂的发光峰,位于627 nm及616 nm处,分别对应于电子到轻空穴及重空穴的跃迁。对芯片窗口区域进行选择性Zn扩散,量子阱原子发生混杂,波长蓝移了43 nm。不带非吸收窗口的器件在1.9 A发生腔面灾变性光学损伤(COD),功率为1.4 W。而带窗口结构的器件没有产生COD,功率输出受限于热饱和,最大功率为2.3 W。室温连续电流测试,1 A下波长为639 nm,1.5 A下波长为640 nm。器件水平发散角为6°,垂直发散角为41°。
Abstract
A short wavelength red light 640 nm high power laser diode has been designed and fabricated. AlGaInP epitaxial layers of the laser diodes are grown by metal organic chemical vapor deposition. The cladding layers are AlInP with low refractive index. The active layer is tensile strained GaInP/AlGaInP quantum well. The photoluminescence spectrum of the active layer shows two splitting peaks locate at 627 nm and 616 nm, which correspond to the transitions from electrons to light holes and heavy holes, respectively. Zn atoms are selectively diffused into the window region, leading to the mixing of the quantum well. The wavelength is blue-shifted by 43 nm. The catastrophic optical damage (COD) occurs for the laser diode without window structure at 1.9 A, corresponding to the power of 1.4 W. The device with window structure has no COD phenomenon. The output power is limited by the thermal rollover with the maximum of 2.3 W. At room temperature, the wavelength of the laser diode is 639 nm at 1 A while 640 nm at 1.5 A. The horizontal divergence angle of the device is 6° and the vertical divergence angle is 41°.
参考文献

[1] 王狮凌, 房丰洲. 大功率激光器及其发展[J]. 激光与光电子学进展, 2017, 54(9): 090005.

    Wang S L, Fang F Z. High power laser and its development[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090005.

[2] Sumitomo H, Kajiyama S, Oguri H, et al. Uniform and high-power characteristics of AlGaInP-based laser diodes with 4-inch-wafer process technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(5): 1170-1175.

[3] Sumpf B, Fricke J, Ressel P, et al. 20000 h reliable operation of 100 μm stripe width 650 nm broad area lasers at more than 1.1 W output power[J]. Semiconductor Science and Technology, 2011, 26(10): 105011.

[4] Sumpf B, Zorn M, Staske R, et al. High-efficient 650 nm laser bars with an output power of about 10 W and a wall-plug efficiency of 30%[J]. Proceedings of SPIE, 2006, 6133: 61330D.

[5] Shimada N, Yukawa M, Shibata K, et al. 640-nm laser diode for small laser display[J]. Proceedings of SPIE, 2009, 7198: 719806.

[6] Imanishi D. High-temperature operation of 640 nm wavelength high-power laser diode arrays[J]. Japanese Journal of Applied Physics, 2017, 56(3): 032702.

[7] Kuramoto K, Nishida T, Abe S, et al. High power operation of AlGaInP red laser diode for display applications[J]. Proceedings of SPIE, 2015, 9348: 93480H.

[8] 赵致童, 张贺, 邹永刚, 等. 液晶显示器激光背光光源侧体发光光纤的设计与研究[J]. 中国激光, 2017, 44(3): 0301004.

    Zhao Z T, Zhang H, Zou Y G, et al. Design and research of side lighted fiber of laser backlight source in liquid crystal display[J]. Chinese Journal of Lasers, 2017, 44(3): 0301004.

[9] 徐美芳, 丁俊文, 胡鹏, 等. 多孔掩模对统计独立散斑图像形成的影响分析[J]. 中国激光, 2017, 44(1): 0101005.

    Xu M F, Ding J W, Hu P, et al. Affects of mutli-apertures mask on formation of statistically independent speckle image[J]. Chinese Journal of Lasers, 2017, 44(1): 0101005.

[10] 钱立勇, 朱向冰, 陈瑾, 等. 激光投影光路中的散斑抑制研究[J]. 光学与光电技术, 2017, 15(5): 62-66.

    Qian L Y, Zhu X B, Chen J, et al. Speckle suppression in laser projection optical path[J]. Optics & Optoelectronic Technology, 2017, 15(5): 62-66.

[11] Peters M, Rossin V, Acklin B. High efficiency, high reliability laser diodes at JDS Uniphase[J]. Proceedings of SPIE, 2005, 5711: 142-151.

[12] Crump P, Erbert G, Wenzel H, et al. Efficient high-power laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1501211.

[13] Yagi T, Shimada N, Nishida T, et al. Highly-reliable operation of 638-nm broad stripe laser diode with high wall-plug efficiency for display applications[J]. Proceedings of SPIE, 2013, 8640: 86400E.

[14] 徐云. 650 nm 基横模大功率AlGaInP半导体激光器的研制及可靠性分析[D]. 北京: 中国科学院半导体研究所, 2005: 32-40.

    Xu Y. Fabrication of 650 nm high-power single-mode AlGaInP semiconductor laser diodes and its reliability analysis[D]. Beijing: Institute of Semiconductors, Chinese Academy of Sciences, 2005: 32-40.

[15] 孔真真, 崔碧峰, 黄欣竹, 等. 大功率半导体激光器性能改善的研究[J]. 激光与光电子学进展, 2017, 54(7): 071403.

    Kong Z Z, Cui B F, Huang X Z, et al. Study on performance improvement of high power semiconductor lasers[J]. Laser & Optoelectronics Progress, 2017, 54(7): 071403.

[16] 朱振, 张新, 肖成峰, 等. 高可靠性瓦级660 nm半导体激光器研制[J]. 中国激光, 2018, 45(5): 0501002.

    Zhu Z, Zhang X, Xiao C F, et al. Fabrication of highly reliable watt-level 660 nm laser diodes[J]. Chinese Journal of Lasers, 2018, 45(5): 0501002.

[17] Sumpf B, Zorn M, Staske R, et al. 3-W broad area lasers and 12-W bars with conversion efficiencies up to 40% at 650 nm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(5): 1188-1193.

[18] 李贺, 梁静秋, 梁中翥, 等. AlGaInP 材料LED 微阵列热学特性分析[J]. 光学学报, 2016, 36(1): 0123001.

    Li H, Liang J Q, Liang Z Z, et al. Thermal analysis of AlGaInP-based LED microarray[J]. Acta Optica Sinica, 2016, 36(1): 0123001.

朱振, 肖成峰, 夏伟, 张新, 苏建, 李沛旭, 徐现刚. 大功率640 nm红光半导体激光器的设计及制备[J]. 激光与光电子学进展, 2018, 55(8): 081403. Zhu Zhen, Xiao Chengfeng, Xia Wei, Zhang Xin, Su Jian, Li Peixu, Xu Xiangang. Design and Fabrication of High Power 640 nm Red Laser Diodes[J]. Laser & Optoelectronics Progress, 2018, 55(8): 081403.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!