红外与激光工程, 2019, 48 (11): 1114005, 网络出版: 2019-12-09   

高分辨率像方远心连续变焦投影镜头的设计

Design of high-resolution image square telecentric continuous zoom projection lens based on TIR prism
作者单位
1 西安美术学院 影视动画系, 陕西 西安 710065
2 华中科技大学 工程实践创新中心, 湖北 武汉 430074
摘要
为了满足基于TIR棱镜的高分辨率工程投影机对高分辨率、高照度均匀性、长后工作距离及连续变焦投影的工作需求, 设计了一种基于TIR棱镜的高分辨率像方远心连续变焦投影镜头。该镜头焦距为25~32 mm, F#为2.4, 工作在可见光波段。该投影镜头具有靶面大、分辨率高、后工作距离长及照度均匀性高的设计难点, 通过选择反远距的双高斯结构, 控制像方远心度, 通过采用不同材料搭配, 并借助CODE V的玻璃专家优化功能, 反复迭代优化, 最终, 得到满足使用要求的连续变焦投影镜头。结果表明: 该镜头在连续变焦过程中各视场MTF值在72 lp/mm处不低于0.4, 各视场RMS弥散斑直径小于8.5 μm, 畸变小于2%, 短焦边缘视场照度均匀性大于95%。该连续变焦投影镜头采用全球面设计, 结构紧凑, 成像质量好, 畸变、垂轴色差和照度均匀性都得到了较好的控制, 可以很好地满足高分辨率工程投影机的投影需求。
Abstract
To meet the requirements of high-resolution, high-illuminance uniformity, long working distance and continuous zoom projection of engineering projectors based on TIR prisms, a new method for continuous zoom and high-resolution telecentric projection lens design was proposed. The focal length of the designed projection lens with F/2.4 ranged from 25 mm to 32 mm, and the lens was specialized for the visible light application. The properties of the large target surface, high-resolution, long working distance and good illumination uniformity were the main difficulties in the projection lens design. The double Gaussian model with anti-distance was chosen as the initial structure. Then a specialized control strategy for image telecentric was employed. The whole design process was conducted in CODE V associated with the expert automatic optimization strategies, such as the choice of the types of different glasses. The results show that the value of MTF within the view fields is no less than 0.4 at 72 lp/mm, the diameters of RMS diffuser is less than 8.5 μm, the distortion is under 2%, and uniformity of field of view of the short focal edge is greater than 95%. The projection lens designed with spherical surfaces show the compact structure and well image quality. The key points, such as distortion, vertical axis chromatic aberration and illuminance uniformity, are also well controlled in this design, which demonstrates that the designed project lens can meet the requirements of high-resolution engineering projectors well.
参考文献

[1] 倪丽霞, 李海峰, 刘旭. 基于多视角采样校正的大尺度多投影光场显示系统[J]. 红外与激光工程, 2018, 47(6): 0603004.

    Ni Lixia, Li Haifeng, Liu Xu. A large-scale multi-projection light-field display based on multi-view sampling calibration [J]. Infrared and Laser Engineering, 2018, 47(6): 0603004. (in Chinese)

[2] 郭丽丽, 李丽娟, 侯茂盛, 等. 智能激光3D投影空间定位精度分析[J]. 红外与激光工程, 2018, 47(8): 0806006.

    Guo Lili, Li Lijuan, Hou Maosheng, et al. Spatial positioning accuracy analysis of intelligent laser 3D projection [J]. Infrared and Laser Engineering, 2018, 47(8): 0806006. (in Chinese)

[3] 徐明飞, 庞武斌, 徐象如, 等. 高数值孔径投影光刻物镜的光学设计[J]. 光学 精密工程, 2016, 24(4): 740-746.

    Xu Mingfei, Pang Wubin, Xu Xiangru, et al. Optical design of high-numerical aperture lithographic lenses [J]. Optics and Precision Engineering, 2016, 24(4): 740-746. (in Chinese)

[4] 朱向冰, 钱立勇, 陈瑾, 等. LED和梯度折射率透镜投影系统光路设计[J]. 光学 精密工程, 2018, 26(1): 62-69.

    Zhu Xiangbing Qian Liyong, Chen Jin, et al. Optical path design of LED and GRIN lens projection system [J]. Optics and Precision Engineering, 2018, 26(1): 62-69. (in Chinese)

[5] 冯思悦, 梁静秋, 梁中翥, 等. LED微阵列投影系统设计[J]. 中国光学, 2019, 12(1): 88-96.

    Feng Siyue, Liang Jingqiu, Liang Zhongzhu, et al. Design of projection system for a micro-LED array [J]. Chinese Optics, 2019, 12(1): 88-96. (in Chinese)

[6] 张洁, 倪小龙, 刘智, 等. 高精度连续变倍率激光扩束系统设计 [J]. 中国光学, 2019, 12(3): 693-700.

    Zhang Jie, Ni Xiaolong, Liu Zhi, et al. Design of laser beam expansion systems with high precision and continuous variable ratios [J]. Chinese Optics, 2019, 12(3): 693-700. (in Chinese)

[7] 刘旭, 李海峰. 现代投影显示技术[M]. 杭州: 浙江大学出版社, 2009.

    Liu Xv, Li Haifeng. Modern Projection Display Technology [M]. Hangzhou: Zhejiang University Press, 2009. (in Chinese)

[8] 钟岩. 基于DLP技术的激光投影系统光路设计[D]. 长春: 长春理工大学, 2015.

    Zhong Yan. Optical design of the laser projection system based on DLP technology [D]. Changchun: Changchun University of Science and Technology, 2015. (in Chinese)

[9] 侯国柱, 吕丽军. 大孔径变焦投影镜头设计[J]. 应用光学, 2018, 39(3): 405-411.

    Hou Guozhu, Lyu Lijun. Design of large aperture zoom projection lens [J]. Journal of Applied Optics, 2018, 39(3): 405-411. (in Chinese)

[10] 林鹏, 余建华, 陈日广, 等. 基于LED的DLP投影显示光学引擎的研究[J]. 现代显示, 2012, 23(4): 49-53.

    Lin Peng, Yu Jianhua, Chen Riguang, et al. Study on Optical Engine System for DLP of Projection Display Based on LED [J]. Advanced Display, 2012, 23(4): 49-53. (in Chinese)

[11] 张增宝. 投影显示系统光学引擎研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2004.

    Zhang Zengbao. Investigation on optical engine applied to projection display system [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2004. (in Chinese)

[12] 李林, 安连生. 计算机辅助光学设计的理论与应用[M]. 北京: 国防工业出版社, 2002.

    Li Lin, An Liansheng. Theory and Application of Computer Aided Optical Design [M]. Beijing: National Defense Industry Press, 2002. (in Chinese)

[13] 李晓彤, 岑兆丰. 几何光学·像差·光学设计[M]. 杭州: 浙江大学出版社, 2003.

    Li Xiaotong, Cen Zhaofeng. Geometric Optics & Aberration & Optical Design [M]. Hangzhou: Zhejiang University Press, 2003. (in Chinese)

[14] 萧泽新. 工程光学设计[M]. 北京: 电子工业出版社, 2008.

    Xiao Zexin. Engineering Optical Design [M]. Beijing: Publishing House of Electronics Industry, 2008. (in Chinese)

邓强, 李升辉. 高分辨率像方远心连续变焦投影镜头的设计[J]. 红外与激光工程, 2019, 48(11): 1114005. Deng Qiang, Li Shenghui. Design of high-resolution image square telecentric continuous zoom projection lens based on TIR prism[J]. Infrared and Laser Engineering, 2019, 48(11): 1114005.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!