中国激光, 2008, 35 (4): 631, 网络出版: 2008-04-21   

光动力法制备抗小鼠H22肝癌的肿瘤疫苗

Generation of Antitumor Vaccines for H22 Tumor on Mouse Using Photodynamic Therap
作者单位
1 天津医科大学生物医学工程系激光医学实验室, 天津 300070
2 天津医科大学眼科中心检验科, 天津 300070
摘要
研究了光动力疗法(PDT)制备的抗小鼠H22肝癌肿瘤疫苗的抗瘤效应。将昆明鼠60只,随机分为2组,每组30只。实验组取6~12周龄的昆明鼠背部皮下接种光动力疗法产生的疫苗,每3天注射一次,每次注射50 μL(相当于3×105个细胞),连续两周。隔一周于第22天注射H22肿瘤细胞悬液0.1 mL(1×106个细胞); 对照组:每周每次注射50 μL生理盐水,连续两周。隔一周于第22天注射H22肿瘤细胞悬液0.1 mL(1×106个细胞)。比较两组的抑瘤率、生存率以及两组之间免疫学的相关指标。结果表明,实验组小鼠具有显著的抑瘤效果,抑瘤率、生存率较对照组有显著提高。实验组肿瘤抑瘤率最高可达60%且长期有效,100天生存率达56%。说明光动力疗法产生的抗小鼠H22肝癌疫苗可以有效地抑制肿瘤生长,提高荷瘤小鼠的生存率,具有明显的抗瘤效应。该方法可能成为一种辅助性治疗肿瘤的手段而应用于临床。
Abstract
To test the contribution of the direct effects of photodynamic therapy (PDT) on tumor cells, we examined the immunogenicity of PDT-generated murine tumor cell lysates in a preclinical vaccine model. Sixty Kunming mice (H22 tumor host) were divided into two groups randomly and equally. Six to twelve-week-old Kunming mice were vaccinated intradermally on the right shoulder with 50 μL lysates (3×105 cell equivalents) for experimental group or medium control for control group every three days during two weeks. The mice rested a week and then inoculated on the flank with 1×106 tumor cells harvested from exponentially growing cultures. And then we compared antitumor rate, survial rate and relevant indicators of immunology between two groups. PDT vaccines could inhibit the tumor growth rate compared to the contrast group. The tumor inhibition rate of PDT vaccines group was 60% and long-term available. The survival rate of PDT vaccines group at 100 day was 56% which was significantly higher than contrast group. Our studies suggest that PDT-generated vaccines could effectively inhibit tumor growth, improve survival rate of mice in experimental group, and enhance antitumor immune response significantly. PDT-generated vaccines may have well clinical potential as an adjuvant therapy.
参考文献

[1] . Dougherty, Charels J. Gomer, Barbara W. Henderson et al.. Photodynamic therapy[J]. Journal of National Cancer Institute, 1998, 90(12): 889-905.

[2] . Dougherty. Photodynamic therapy-mediated immune response against subcutaneous mouse tumors[J]. Cancer Research, 1999, 59: 1941-1946.

[3] Luo Ronghui, Chen Xiangcai, Liu Wanhua et al.. Injurious and immune effect of photodynamic therapy on mice bearing louis lung cancer [J]. Chinese J. Lasers, 2002, A29(8):763~765
罗荣辉,陈香才,刘婉华 等. 光动力疗法对Louis肺癌鼠的杀伤及免疫效应[J]. 中国激光, 2002, A29(8):763~765

[4] . Gollnick, Xiaonan Liu, Barbara Owczarczak et al.. Altered expression of interleukin 6 and interleukin 10 as a result of photodynamic therapy in vivo[J]. Cancer Research, 1997, 57: 3904-3909.

[5] . Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response[J]. Cancer Research, 2005, 65: 1018-1026.

[6] . Mediators of peripheral blood neutrophilia induced by photodynamic therapy of solid tumors[J]. Cancer Letters, 2002, 183: 43-51.

[7] . O. Gollnick, S. S. Evans, H. Baumann et al.. Role of cytokines in photodynamic therapy-induced local and systemic inflammation[J]. British Journal of Cancer, 2003, 88: 1772-1779.

[8] . Karolina Palucka et al.. Dendritic cells as vectors for therapy[J]. Cell, 2001, 106: 271-274.

[9] . . Experimental and clinical research of dendritic cell and syngeneic immunotherapy of brain glioma[J]. The Chinese-German Journal of Clinical Oncology, 2004, 3(3): 147-150.

[10] . . Antitumor effects of vaccine consisting of dendritic cells plused with tumor RNA from gastric cancer[J]. Ganstric Cancer, 2004, 10(5): 630-633.

[11] . . Failure of cancer vaccines:the significant limitations of their approach to immunotherapy[J]. Anticancer Research, 2000, 20: 2665-2676.

[12] Cheng Gang, Zhong Qiuhai, Liu Fanguang et al.. Modeling and simulation of the acting factors on vascular selectivity of photodynamic therapy [J]. Chinese J. Lasers, 2005, 32(6):864~868
程刚,钟秋海,刘凡光 等. 鲜红斑痣光动力治疗模型仿真初步研究[J]. 中国激光, 2005, 32(6):864~868

[13] Gao Bowen, Meng Jing, Fang Yun et al.. Transient-grating of hypocrellin in photodynamic therapy based on three-dimensional degenerative four-wave mixing [J]. Acta Optica Sinica, 2007, 27(6):1071~1075
高博文,孟婧,方芸 等. 基于三维简并四波混频的PDT光敏剂HA瞬态光栅特性研究[J]. 光学学报, 2007, 27(6):1071~1075

[14] . Gollnick, Lurine Vaughan, Barbara W. Henderson. Generation of effective antitumor vaccines using photodynamic therapy[J]. Cancer Research, 2002, 62: 1604-1608.

[15] . Photodynamic therapy-generated vaccine for cancer therapy[J]. Cancer Immunol Immunother, 2006, 55: 900-909.

[16] Cheng Gang, Zhong Qiuhai, Huang Naiyan et al.. Mathematics modeling and clinic experiment of photodynamic therapy for port wine stain [J]. Chinese J. Lasers, 2006, 33(6):857~862
程刚,钟秋海,黄乃艳 等. 鲜红斑痣光动力治疗数学模型及临床验证[J]. 中国激光, 2006, 33(6):857~862

张红雨, 马文江, 邹朝晖, 高卫平, 薛志孝, 李迎新. 光动力法制备抗小鼠H22肝癌的肿瘤疫苗[J]. 中国激光, 2008, 35(4): 631. Zhang Hongyu, Ma Wenjiang, Zou Zhaohui, Gao Weiping, Xue Zhixiao, Li Yingxin. Generation of Antitumor Vaccines for H22 Tumor on Mouse Using Photodynamic Therap[J]. Chinese Journal of Lasers, 2008, 35(4): 631.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!