光学 精密工程, 2018, 26 (8): 2021, 网络出版: 2018-10-02   

自驱动关节臂坐标测量机模块化关节设计

Design of modular articulation in self-driven AACMM
作者单位
1 合肥工业大学 仪器科学与光电工程学院, 安徽 合肥 230001
2 安徽理工大学 机械工程学院电控制系 安徽 淮南 232001
摘要
传统的关节臂测量机工作时是依靠工作人员牵拉实现运动和测量, 存在路径规划不佳、主观性误差大、测量效率低等问题很难适应智能制造对在线自动测量系统的新要求。本文提出了利用含有无刷电机、谐波减速器及精密轴系的模块化关节构成自驱动关节臂坐标测量机的构想, 并对模块化关节进行了构型设计, 建立了单关节扭矩估算模型, 在此基础上选择了关节2的电机和谐波减速器, 设计了关节模块的测控电路, 研制了单关节部件样机并进行了重复性实验。其中单方向测量数据表明, 为保证较小的测量重复性误差, 关节在运动时应尽量避免速度或加速度突变的运动形式; 双方向测量的数据表明, 当控制电机运动速率小于1.53 rad/s时, 测头因回弹产生误触发信号的概率较小, 此时最大误差数据为±2.11″。上述实验也验证了模块化关节设计方案的可行性, 为后续自驱动关节臂坐标测量机整机研制提供了理论和实验依据。
Abstract
A large subjective error and low measurement efficiency occurs as a result of manual movement and measurement in a traditional Articulated Arm Coordinate Measuring Machine (AACMM) to solve the problem of worse path planning, In this case, it is difficult to adapt the system to the new requirements of online automatic measuring systems. As such, the concept of a self-driven AACMM is proposed which includes a brushless motor and a harmonic reducer, and demonstrates precise shafting in its articulation. A structure for the modular articulation and the torsion estimating model is also proposed. A prototype and experimental device of the Joint2 with a measurement and control circuit, motor and harmonic reducer were built to evaluate the performance and facilitate a series of repeatability experiments. A prototype with a single joint component was developed and repeatability experiments were performed. The single direction measurement data show that to ensure a small repeatability error, the joints should avoid drastic changes in velocity or acceleration when in motion. The data from the measurement of both sides show that when the motor speed of the control machine is less than 1.53 rad/s, the probability that the probe will produce a false trigger signal is small, and the repeatability error is ±2.11″. The experiment also verifies the feasibility of the modular articulation design scheme. These research findings provide a theoretical and experimental basis for studying completely self-driven AACMM.
参考文献

[1] 林虎,Frank H(a)rtig,KarinKniel,等.基于便携式坐标测量机的大齿轮测量方法[J].光学 精密工程,2013, 21(7): 1763-1770.

    LIN H, Frank H(a)rtig, Karin Kniel, et al..Measurement of large gears by using portable coordinate measuring machines [J]. Opt.Precision Eng., 2013, 21(7): 1763-1770. (in Chinese)

[2] 程文涛, 于连栋, 费业泰. 一种关节式坐标测量机的建模及其标定[J]. 中国科学技术大学学报, 2011, 41(5): 439-444.

    CHENG W T,YU L D,FEI Y T. Kinematic model and calibration of an articulated arm coordinate measuring machine[J]. Journal of University of Science and Technology of China, 2011,41(5): 439-444. (in Chinese)

[3] 祝连庆, 李伟仙, 潘志康,等.变臂关节式坐标测量机的参数自标定方法研究[J]. 仪器仪表学报, 2014, 35(3): 572-579.

    ZHU L Q, LI W X, PAN ZH G, et al..Research on parameter self-calibration method for partly-bonded articulated arm coordinate measuring machine [J]. Chinese Journal of Scientific Instrument, 2014,35(3): 572-579. (in Chinese)

[4] 于连栋, 鲁思颖, 张炜,等. 平行双关节坐标测量机连杆微变形测量系统[J]. 电子测量与仪器学报, 2015, 29(11): 1621-1629.

    YU L D,LU S Y,ZHANG W, et al.. Measuring system of micro-deformation of parallel double-joint coordinate measuring machine linkage[J]. Journal of Electronic Measurement and Instrumentation.,2015,29(11): 1621-1629.

[5] 胡毅,江超,黄炜,等. 用蚁群算法求解关节式坐标测量机的最佳测量区[J]. 光学 精密工程,2017,25(6): 1486-1493.

    HU Y, JIANG CH, HUANG W, et al..Optimal measurement area of articulated coordinate measuring machine calculated by ant colony algorithm[J].Opt. Precision Eng.,2017,25(6): 1486-1493. (in Chinese)

[6] 高贯斌,王文,林铿,等. 圆光栅角度传感器的误差补偿及参数辨识[J].光学 精密工程,2010,18(08): 1766-1772.

    GAO G B, WANG W, LIN K,et al..Error compensation and parameter identification of circular grating angle sensors[J]. Opt. Precision Eng., 2010,18(08): 1766-1772. (in Chinese)

[7] González-Madruga Daniel, Barreiro Joaquin, Cuesta Eduardo, et al.. AACMM performance test: influence of human factor and geometric features[J]. Procedia Engineering, 2014, 69: 442-448.

[8] CUESTA E, MANTARAS D A, LUQUE P, et al.. Dynamic deformations in coordinate measuring arms using virtual simulation[J]. International Journal of Simulation Modelling, 2015, 14(4): 609-620.

[9] VOGEL J, HADDADIN S, SIMERAL J D, et al.. Continuous control of the DLR Light-Weight Robot III by a human with tetraplegia using the BrainGate2 neural interface system[J]. Experimental Robotics, 2014: 125-136.

[10] SALISBURY K, TOWNSEND W, EBRMAN B, et al.. Preliminary design of a whole-arm manipulation system (WAMS)[J]. Proceedings 1988 IEEE International Conference on Robotics and Automation,1988,(1): 254-260.

[11] 熊根良. 具有柔性关节的轻型机械臂控制系统研究[D]. 哈尔滨工业大学, 2010.

    XION G L. Research on control of light weight robot with flexible joints[D]. Harbin Institute of Technology,2010.(in Chinese)

[12] 邾继贵, 邹剑, 林嘉睿,等. 面向测量的工业机器人定位误差补偿[J]. 光电子·激光, 2013(4): 746-750.

    ZHU J G,ZOU J,LIN J R,et al..Measurement-oriented positioning error compensation for industrial robot[J]. Journal of Optoelectronics·Laser, 2013(4): 746-750. (in Chinese)

[13] 杨守瑞, 尹仕斌, 任永杰,等. 机器人柔性视觉测量系统标定方法的改进[J]. 光学 精密工程, 2014, 22(12): 3239-3246.

    YANG SH R,YIN S B,REN Y J,et al..Improvement of calibration method for robotic flexible visual measurement systems[J]. Opt. Precision Eng.,2014,22(12): 3239-3246. (in Chinese)

[14] 招绍坤. 轻型机械臂模块化设计与运动控制的研究[D]. 哈尔滨工业大学, 2010.

    ZHAO SH K. Modular design and motion control for light robot arm[D]. Harbin Institute of Technology,2010.(in Chinese)

胡毅, 黄炜, 胡鹏浩, 杨洪涛. 自驱动关节臂坐标测量机模块化关节设计[J]. 光学 精密工程, 2018, 26(8): 2021. HU Yi, HUANG Wei, HU Peng-hao, YANG Hong-tao. Design of modular articulation in self-driven AACMM[J]. Optics and Precision Engineering, 2018, 26(8): 2021.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!