光子学报, 2017, 46 (5): 0526002, 网络出版: 2017-06-30   

新型部分相干光束的产生及其相干特性

Generation of a New Kind Partially Coherent Beam and Its Coherent Properties
作者单位
华侨大学 信息科学与工程学院 福建省光传输与变换重点实验室, 福建 厦门 361021
摘要
利用相干理论, 研究了新型部分相干光束的相干特性.用激光光束透过旋转的特殊毛玻璃, 产生一种相干性分布特殊的新型部分相干光束.实验上经双孔干涉, 记录了该光束经不同小孔间距双孔产生的干涉条纹, 计算得出所对应的相干度, 并获得了该光束在不同传输距离下的相干度分布情况, 发现该光束的相干度分布与高斯-谢尔模型光束的相干度分布不相同, 其相干度随着传输距离的增大而变强.
Abstract
Based on the coherent theory, the coherent properties of the new partially coherent beam were studied. The new partially coherent beam with the specific distribution of coherence was formed by the laser passing through a rotating special ground glass. The interference fringes produced by this beam passing through some double-holes with different hole spaces were experimentally recorded and their corresponding coherence degree was calculated. The coherence distributions of this beam under different propagation distances were experimentally investigated. The results show that, the coherence distributions of this beam are different with those of Gaussian Schell-model beams, and the degree of coherence increases with the increasing of propagation distances.
参考文献

[1] WOLF E, COLLETT E. Partially coherent sources which produce the same for-field intensity distribution as a laser [J]. Optics Communications, 1978, 25(3):293-296.

[2] SANTIS P D, GORI F, GUATTARI G, et al. An example of a collett-wolf source[J]. Optics Communications, 1979, 29(3):256–260.

[3] FARINA J D, NARDUCCI L M, COLLET E. Generation of highly directional beams from a globally incoherent source[J]. Optics Communications, 1980, 32(2):203-208.

[4] TERVONEN E, FRIBERG A T, TURUNEN J. Gaussian Schell-model beams generated with synthetic acousto-optic holograms[J]. Journal of the Optical Society of America A, 1992, 9(5):796-803.

[5] DIXIT S N, THOMAS I M, WOODS B W. Random phase plates for beam smoothing on the Nova laser[J]. Applied Optics, 1993, 32(14):2543-2554.

[6] SIMON R, SUDARSHAN E, MUKUNDA N. Anisotropic Gaussian Schell-model beams passage through optical systems and associated invariants[J]. Physical Review A General Physics. 1985, 31(4):2419-2434.

[7] FRIBERG A, TERVONEN E, TURUNEN J. Interpretation and experimental demonstration of twisted Gaussian Schell-model beams[J]. Journal of the Optical Society of America A , 1994, 11(6):1818-1826.

[8] WOLF E. 光的相干与偏振理论导论[M]. 蒲继雄译. 北京:北京大学出版社, 2014.

    WOLF E. Introduction to the Theory of Coherence and Polarization of light[M]. Pu Ji-xiong, transl. Beijing: Peking University Press, 2014.

[9] LI Ya-jun. Correlations between intensity fluctuations in stochastic electromagnetic Gaussian Schell-model beam[J]. Optics Communications, 2014, 316(316): 67–73.

[10] KATO Y, MIMA K, MIYANAGA N. et al. Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression[J]. Physical Review Letters, 1984, 53(11): 1057-1060.

[11] DIXIT S N, THOMAS I M, WOODS B W. et al. Random phase plates for beam smoothing on the Nova laser[J]. Applied Optics , 1993, 32(14): 2543-2554.

[12] 丘军林.高功率激光器的光束质量及其对激光加工的影响[J]. 激光技术, 1994, 18(2): 86-91.

    QIU Jun. The beam quality of high power lasers and its influences on the laser processing[J]. Laser Technology, 1994, 18(2): 86-91.

[13] YUAN Yang-sheng, LIU Xian-long, WANG Fei. et al. Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere[J]. Optics Communications . 2013, 305(3): 57–65.

[14] 柯熙政,薛 瑶.大气湍流尺度对部分相干光传输特性的影响[J]. 光子学报, 2017, 46(1): 0101003.

    KE Xi-zheng,XUE Yao. The effect on the partially coherent beam propagation properties in the atmospheric turbulence considering its scales[J]. Acta Photonica Sinica. 2017, 46(1): 0101003.

[15] ZHOU Ying, HUANG Kai-kai, ZHAO Dao-mu. Changes in the statistical properties of stochastic anisotropic electromagnetic beams propagating through the oceanic turbulence[J]. Applied Physics B. 2012, 109(2):289–294.

[16] XIA Ming-chao, ZHANG Yi-xin, LI Ye, et al. Polarization model of quantized Gaussian Schell-model fields in an oceanic turbulence[J]. Acta Photonica Sinica. 2016, 45(5): 160-166.

[17] HE Xue-mei, Lü Bai-da. Propagation of partially coherent flat-topped vortex beams through non-Kolmogorov atmospheric turbulence[J]. Journal of the Optical Society of America A. 2011, 28(9): 1941-1948.

[18] YANG Yuan-jie, CHEN Ming-zhou, MAZILU M, et al. Effect of the radial and azimuthal mode indices of a partially coherent vortex field upon a spatial correlation singularity[J]. New Journal of Physics, 2013, 15(11):1633-1691.

[19] DONG Yi-ming, WANG Fei, ZHAO Cheng-liang, et al. Effect of spatial coherence on propagation, tight focusing, and radiation forces of an azimuthally polarized beam[J]. Physical Review A, 2012, 86(1):7773-7773.

[20] ALVES C, JESUSSILVA A, FONSECA E. Using speckles to recover an image after its transmission through obstacles[J]. Physical Review A,2016, 93(4): 043816.

[21] CUI Zhe, WANG An-ting, WANG Zi. et al. Speckle Suppression by controlling the coherence in laser based projection systems[J]. Journal of Display Technology. 2015, 11(4): 330-335.

[22] BORN M and WOLF E. Principles of Optics[M]. Oxford: Pergamon Press, 1999.

吴子豪, 陈子阳, 蒲继雄, 林志立. 新型部分相干光束的产生及其相干特性[J]. 光子学报, 2017, 46(5): 0526002. WU Zi-hao, CHEN Zi-yang, PU Ji-xiong, LIN Zhi-li. Generation of a New Kind Partially Coherent Beam and Its Coherent Properties[J]. ACTA PHOTONICA SINICA, 2017, 46(5): 0526002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!