Journal of Innovative Optical Health Sciences, 2016, 9 (4): 1630004, Published Online: Dec. 27, 2018  

Gold nanoparticles for cancer theranostics:Abrief update

Author Affiliations
1 College of Life and Health Sciences, Northeastern University ShenYang, Liaoning, P. R. China
2 Department of Radiology and Bio-X Program, School of Medicine Stanford University, Stanford, CA, USA
Abstract
Gold nanoparticles (AuNPs) exhibit superior optical and physical properties for more effective treatment of cancer through incorporating both diagnostic and therapeutic functions into one single platform. The ability to passively accumulate on tumor cells provides AuNPs the opportunity to become an attractive contrast agent for X-ray based computed tomography (CT) imaging in vivo. Because of facile surface modification, various size and shape of AuNPs have been extensively functionalized and applied as active nanoprobes and drug carriers for cancer targeted theranostics. Moreover, their capabilities on producing photoacoustic (PA) signals and photothermal effects have been used to image and treat tumor progression, respectively. Herein, we review the developments of AuNPs as cancer diagnostics and chemotherapeutic drug vector, summarizing strategies for tumor targeting and their applications in vitro and in vivo.
References

[1] Y. Choi, Y. Cho, M. Kim, R. Grailhe, R. Song, "Fluorogenic quantum dot-gold nanoparticle assembly for beta secretase inhibitor screening in live cell," Anal. Chem. 84, 8595–8601 (2012).

[2] H. Mollasalehi, R. Yazdanparast, "Non-crosslinking gold nanoprobes for detection of nucleic acid sequence- based amplification products," Anal. Biochem. 425, 91–95 (2012).

[3] T. pringer, J. Homola, "Biofunctionalized gold nanoparticles for spr-biosensor-based detection of cea in blood plasma," Anal. Bioanal. Chem. 404, 2869–2875 (2012).

[4] D. T. Nguyen, D.-J. Kim, K.-S. Kim, "Controlled synthesis and biomolecular probe application of gold nanoparticles," Micron 42, 207–227 (2011).

[5] S. Keren, C. Zavaleta, Z. Cheng, A. de la Zerda, O. Gheysens, S. S. Gambhir, "Noninvasive molecular imaging of small living subjects using raman spectroscopy," Proc. Natl. Acad. Sci. USA 105, 5844– 5849 (2008).

[6] A. S. Thakor, R. Luong, R. Paulmurugan, F. I. Lin, P. Kempen, C. Zavaleta, P. Chu, T. F. Massoud, R. Sinclair, S. S. Gambhir, "The fate and toxicity of raman active silica-gold nanoparticles in mice," Sci. Translat. Med. 3, doi:10.1126/scitranslmed. 3001963 (2011).

[7] J. V. Jokerst, Z. Miao, C. Zavaleta, Z. Cheng, S. S. Gambhir, "Affibody-functionalized gold–silica nanoparticles for raman molecular imaging of the epidermal growth factor receptor," Small (Weinheim an Der Bergstrasse, Germany) 7, 625–633 (2011).

[8] S.-P. Lee, "Non-alcoholic fatty liver disease, a marker of subclinical atherosclerosis applicable only to metabolic syndrome : Time to organize the connection between metabolism and atherosclerosis," J. Cardiovasc. Ultrasound 20, 124–125 (2012).

[9] S. Lee, H. Chon, J. Lee, J. Ko, B. H. Chung, D. W. Lim, J. Choo, "Rapid and sensitive phenotypic marker detection on breast cancer cells using surface- enhanced raman scattering (sers) imaging," Biosens. Bioelectron. 51, 238–243 (2014).

[10] K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, "Gold nanoparticles in chemical and biological sensing," Chem. Rev. 112, 2739–2779 (2012).

[11] X. Wang, Y. Xia, Y. Liu, W. Qi, Q. Sun, Q. Zhao, B. Tang, "Dual-luminophore-labeled gold nanoparticles with completely resolved emission for the simultaneous imaging of mmp-2 and mmp-7 in living cells under single wavelength excitation," Chem. A Eur. J. 18, 7189–7195 (2012).

[12] R. A. Petros, J. M. DeSimone, "Strategies in the design of nanoparticles for therapeutic applications," Nat. Rev. Drug Discov. 9, 615–627 (2010).

[13] H. Lusic, M. W. Grinstaff, "X-ray-computed tomography contrast agents," Chem. Rev. 113, 1641– 1666 (2013).

[14] K. B. Ghaghada, C. T. Badea, L. Karumbaiah, N. Fettig, R. V. Bellamkonda, G. A. Johnson, A. Annapragada, "Evaluation of tumor microenvironment in an animal model using a nanoparticle contrast agent in computed tomography imaging," Acad. Radiol. 18, 20–30 (2011).

[15] J. F. Hainfeld, M. J. O'Connor, F. A. Dilmanian, D. N. Slatkin, D. J. Adams, H. M. Smilowitz, "Micro-ct enables microlocalisation and quantification of her2- targeted gold nanoparticles within tumour regions," Br. J. Radiol. 84, 526–533 (2011).

[16] H. Wang, L. Zheng, C. Peng, M. Shen, X. Shi, G. Zhang, "Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted ct imaging of human lung adencarcinoma," Biomaterials 34, 470–480 (2013).

[17] T. Reuveni, M. Motiei, Z. Romman, A. Popovtzer, R. Popovtzer, "Targeted gold nanoparticles enable molecular ct imaging of cancer: An in vivo study," Int. J. Nanomed. 6, 2859–2864 (2011).

[18] Q. Chen, H. Wang, H. Liu, S. Wen, C. Peng, M. Shen, G. Zhang, X. Shi, "Multifunctional dendrimer- entrapped gold nanoparticles modified with rgd peptide for targeted computed tomography/ magnetic resonance dual-modal imaging of tumors," Anal. Chem. 87, 3949–3956 (2015).

[19] T. Curry, R. Kopelman, M. Shilo, R. Popovtzer, "Multifunctional theranostic gold nanoparticles for targeted ct imaging and photothermal therapy," Contrast Media Mol. Imag. 9, 53–61 (2014).

[20] J. Li, Y. Hu, J. Yang, P. Wei, W. Sun, M. Shen, G. Zhang, X. Shi, "Hyaluronic acid-modified fe3o4@au core/shell nanostars for multimodal imaging and photothermal therapy of tumors," Biomaterials 38, 10–21 (2015).

[21] Q. Chen, K. Li, S. Wen, H. Liu, C. Peng, H. Cai, M. Shen, G. Zhang, X. Shi, "Targeted ct/mr dual mode imaging of tumors using multifunctional dendrimerentrapped gold nanoparticles," Biomaterials 34, 5200–5209 (2013).

[22] K. Li, S. Wen, A. C. Larson, M. Shen, Z. Zhang, Q. Chen, X. Shi, G. Zhang, "Multifunctional dendrimer- based nanoparticles for in vivo mr/ct dualmodal molecular imaging of breast cancer," Int. J. Nanomed. 8, 2589–2600 (2013).

[23] L. Karmani, D. Labar, V. Valembois, V. Bouchat, P. G. Nagaswaran, A. Bol, J. Gillart, P. Levêque, C. Bouzin, D. Bonifazi, C. Michiels, O. Feron, V. Gregoire, S. Lucas, T. V. Borght, B. Gallez, "Antibody-functionalized nanoparticles for imaging cancer: Influence of conjugation to gold nanoparticles on the biodistribution of 89zr-labeled cetuximab in mice," Contrast Media Mol. Imag. 8, 402–408 (2013).

[24] L. Karmani, V. Bouchat, C. Bouzin, P. Levêque, D. Labar, A. Bol, G. Deumer, R. Marega, D. Bonifazi, V. Haufroid, C. Michiels, V. Gregoire, O. Feron, S. Lucas, T. Vander Borght, B. Gallez, "89zr-labeled anti-endoglin antibody-targeted gold nanoparticles for imaging cancer: Implications for future cancer therapy," Nanomedicine 9, 1923–1937 (2014).

[25] Y. Zhao, D. Sultan, L. Detering, H. Luehmann, Y. Liu, "Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of 64cu-au alloy nanoclusters," Nanoscale 6, 13501–13509 (2014).

[26] Y. Zhao, D. Sultan, L. Detering, S. Cho, G. Sun, R. Pierce, K. L. Wooley, Y. Liu, "Copper-64-alloyed gold nanoparticles for cancer imaging: Improved radiolabel stability and diagnostic accuracy," Angew. Chem. Int. Ed. 53, 156–159 (2014).

[27] H. Groult, J. Ruiz-Cabello, J. Pellico, A. V. Lechuga-Vieco, R. Bhavesh, M. Zamai, E. Almarza, I. Martín-Padura, E. Cantelar, M. P. Martínez- Alcazar, F. Herranz, "Parallel multifunctionalization of nanoparticles: A one-step modular approach for in vivo imaging," Bioconjugate Chem. 26, 153–160 (2015).

[28] K. C. L. Black, Y. Wang, H. P. Luehmann, X. Cai, W. Xing, B. Pang, Y. Zhao, C. S. Cutler, L. V. Wang, Y. Liu, Y. Xia, "Radioactive 198au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution," ACS Nano 8, 4385–4394 (2014).

[29] Y. Wang, Y. Liu, H. Luehmann, X. Xia, D. Wan, C. Cutler, Y. Xia, "Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging," Nano Lett. 13, 581–585 (2013).

[30] K. Y. Choi, G. Liu, S. Lee, X. Chen, "Theranostic nanoplatforms for simultaneous cancer imaging and therapy: Current approaches and future perspectives," Nanoscale 4, 330–342 (2012).

[31] H.-C. Huang, S. Barua, G. Sharma, S. K. Dey, K. Rege, "Inorganic nanoparticles for cancer imaging and therapy," J. Control. Release 155, 344–357 (2011).

[32] J. Choi, J. Yang, D. Bang, J. Park, J.-S. Suh, Y.-M. Huh, S. Haam, "Targetable gold nanorods for epithelial cancer therapy guided by near-ir absorption imaging," Small 8, 746–753 (2012).

[33] S.-H. Seo, B.-M. Kim, A. Joe, H.-W. Han, X. Chen, Z. Cheng, E.-S. Jang, "Nir-light-induced surfaceenhanced raman scattering for detection and photothermal/ photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@sio2 nanocomposites," Biomaterials 35, 3309–3318 (2014).

[34] N. Jimenez-Mancilla, G. Ferro-Flores, C. Santos- Cuevas, B. Ocampo-García, M. Luna-Gutierrez, E. Azorín-Vega, K. Isaac-Olive, M. Camacho-López, E. Torres-García, "Multifunctional targeted therapy system based on 99mtc/177lu-labeled gold nanoparticles- tat(49–57)-lys3-bombesin internalized in nuclei of prostate cancer cells," J. Label. Comp. Radiopharm. 56, 663–671 (2013).

[35] M. Raoof, S. J. Corr, W. D. Kaluarachchi, K. L. Massey, K. Briggs, C. Zhu, M. A. Cheney, L. J. Wilson, S. A. Curley, "Stability of antibody-conjugated gold nanoparticles in the endolysosomal nanoenvironment: Implications for noninvasive radiofrequency-based cancer therapy," Nanomed. Nanotechnol. Biol. Med. 8, 1096–1105 (2012).

[36] J. Lin, S. Wang, P. Huang, Z. Wang, S. Chen, G. Niu, W. Li, J. He, D. Cui, G. Lu, X. Chen, Z. Nie, "Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/ photodynamic therapy," ACS Nano 7, 5320–5329 (2013).

[37] V. Biju, "Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy," Chem. Soc. Rev. 43, 744–764 (2014).

[38] E. Jeong, G. Jung, C. Hong, H. Lee, "Gold nanoparticle (aunp)-based drug delivery and molecular imaging for biomedical applications," Arch. Pharm. Res. 37, 53–59 (2014).

[39] H. Jaganathan, S. Mitra, S. Srinivasan, B. Dave, B. Godin, "Design and in vitro evaluation of layer by layer sirna nanovectors targeting breast tumor initiating cells," PLoS ONE 9, e91986 (2014).

[40] J. Conde, A. Ambrosone, V. Sanz, Y. Hernandez, V. Marchesano, F. Tian, H. Child, C. C. Berry, M. R. Ibarra, P. V. Baptista, C. Tortiglione, J. M. de la Fuente, "Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing," ACS Nano 6, 8316–8324 (2012).

[41] A. Ekin, O. F. Karatas, M. Culha, M. Ozen, "Designing a gold nanoparticle-based nanocarrier for microrna transfection into the prostate and breast cancer cells," J. Gene Med. 16, 331–335 (2014).

[42] J.-H. Yeom, S.-M. Ryou, M. Won, M. Park, J. Bae, K. Lee, "Inhibition of xenograft tumor growth by gold nanoparticle-DNA oligonucleotide conjugatesassisted delivery of bax mrna," PLoS ONE 8, e75369 (2013).

[43] S. Huo, S. Jin, X. Ma, X. Xue, K. Yang, A. Kumar, P. C. Wang, J. Zhang, Z. Hu, X.-J. Liang, "Ultrasmall gold nanoparticles as carriers for nucleus- based gene therapy due to size-dependent nuclear entry," ACS Nano 8, 5852–5862 (2014).

[44] C. J. Bishop, S. Y. Tzeng, J. J. Green, "Degradable polymer-coated gold nanoparticles for co-delivery of DNA and sirna," Acta Biomater. 11, 393–403 (2015).

[45] L. Han, J. Zhao, X. Zhang, W. Cao, X. Hu, G. Zou, X. Duan, X.-J. Liang, "Enhanced sirna delivery and silencing gold–chitosan nanosystem with surface charge-reversal polymer assembly and good biocompatibility," ACS Nano 6, 7340–7351 (2012).

[46] A. Llevot, D. Astruc, "Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer," Chem. Soc. Rev. 41, 242–257 (2012).

[47] Y. Cheng, T. L. Doane, C.-H. Chuang, A. Ziady, C. Burda, "Near infrared light-triggered drug generation and release from gold nanoparticle carriers for photodynamic therapy," Small 10, 1799–1804 (2014).

[48] S. Rana, A. Bajaj, R. Mout, V. M. Rotello, "Monolayer coated gold nanoparticles for delivery applications," Adv. Drug Deliv. Rev. 64, 200–216 (2012).

[49] A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, S. S. Gambhir, Gold nanoparticles: A revival in precious metal administration to patients," Nano Lett. 11, 4029–4036 (2011).

[50] N. C. Bigall, A. Curcio, M. P. Leal, A. Falqui, D. Palumberi, R. Di Corato, E. Albanesi, R. Cingolani, T. Pellegrino, "Magnetic nanocarriers with tunable ph dependence for controlled loading and release of cationic and anionic payloads," Adv. Mat. 23, 5645– 5650 (2011).

[51] C. M. Dawidczyk, C. Kim, J. H. Park, L. M. Russell, K. H. Lee, M. G. Pomper, P. C. Searson, "State-ofthe- art in design rules for drug delivery platforms: Lessons learned from fda-approved nanomedicines," J. Control. Release 187, 133–144 (2014).

[52] S. C. Coelho, S. Rocha, P. Juzenas, P. Sampaio, G. M. Almeida, F. S. Silva, M. C. Pereira, M. A. N. Coelho, "Gold nanoparticle delivery-enhanced proteasome inhibitor effect in adenocarcinoma cells," Expert Opin. Drug Deliv. 10, 1345–1352 (2013).

[53] A. Latorre, C. Posch, Y. Garcimartin, A. Celli, M. Sanlorenzo, I. Vujic, J. Ma, M. Zekhtser, K. Rappersberger, S. Ortiz-Urda, A. Somoza, "DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics," Nanoscale 6, 7436–7442 (2014).

[54] Y.-S. Shiao, H.-H. Chiu, P.-H. Wu, Y.-F. Huang, "Aptamer-functionalized gold nanoparticles as photoresponsive nanoplatform for co-drug delivery," ACS Appl. Mat. Interfaces 6, 21832–21841 (2014).

[55] S.-M. Ryou, J.-H. Yeom, H. J. Kang, M. Won, J.-S. Kim, B. Lee, M.-J. Seong, N.-C. Ha, J. Bae, K. Lee, "Gold nanoparticle–DNA aptamer composites as a universal carrier for in vivo delivery of biologically functional proteins," J. Control. Release 196, 287– 294 (2014).

[56] X. Sun, G. Zhang, R. S. Keynton, M. G. O'Toole, D. Patel, A. M. Gobin, "Enhanced drug delivery via hyperthermal membrane disruption using targeted gold nanoparticles with pegylated protein-g as a cofactor," Nanomed. Nanotechnol. Biol. Med. 9, 1214–1222 (2013).

[57] S. Biswas, S. H. Medina, J. J. Barchi Jr., "Synthesis and cell-selective antitumor properties of amino acid conjugated tumor-associated carbohydrate antigencoated gold nanoparticles," Carbohydrate Res. 405, 93–101 (2015).

[58] A. Kumar, S. Huo, X. Zhang, J. Liu, A. Tan, S. Li, S. Jin, X. Xue, Y. Zhao, T. Ji, L. Han, H. Liu, X. Zhang, J. Zhang, G. Zou, T. Wang, S. Tang, X.-J. Liang, "Neuropilin-1-targeted gold nanoparticles enhance therapeutic efficacy of platinum(iv) drug for prostate cancer treatment," ACS Nano 8, 4205– 4220 (2014).

[59] M. S. Mohamed, S. Veeranarayanan, A. C. Poulose, Y. Nagaoka, H. Minegishi, Y. Yoshida, T. Maekawa, D. S. Kumar, "Type 1 ribotoxin-curcin conjugated biogenic gold nanoparticles for a multimodal therapeutic approach towards brain cancer," Biochim. Biophys. Acta Gen. Subj. 1840, 1657–1669 (2014).

[60] W. Pan, H. Yang, T. Zhang, Y. Li, N. Li, B. Tang, "Dual-targeted nanocarrier based on cell surface receptor and intracellular mrna: An effective strategy for cancer cell imaging and therapy," Anal. Chem. 85, 6930–6935 (2013).

[61] Y. Wang, Z. Miao, G. Ren, Y. Xu, Z. Cheng, "A novel affibody bioconjugate for dual-modality imaging of ovarian cancer," Chem. Commun. 50, 12832–12835 (2014).

[62] M. S. Khan, G. D. Vishakante, H. Siddaramaiah, "Gold nanoparticles: A paradigm shift in biomedical applications," Adv. Colloid Interface Sci. 199–200, 44–58 (2013).

[63] Y. Wang, K. C. L. Black, H. Luehmann, W. Li, Y. Zhang, X. Cai, D. Wan, S.-Y. Liu, M. Li, P. Kim, Z.-Y. Li, L. V. Wang, Y. Liu, Y. Xia, "Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment," ACS Nano 7, 2068–2077 (2013).

[64] Z. Heidari, R. Sariri, M. Salouti, "Gold nanorodsbombesin conjugate as a potential targeted imaging agent for detection of breast cancer," J. Photochem. Photobiol. B: Biol. 130, 40–46 (2014).

[65] K. Cheng, S.-R. Kothapalli, H. Liu, A. L. Koh, J. V. Jokerst, H. Jiang, M. Yang, J. Li, J. Levi, J. C. Wu, S. S. Gambhir, Z. Cheng, "Construction and validation of nano gold tripods for molecular imaging of living subjects," J. Am. Chem. Soc. 136, 3560–3571 (2014).

Ning Zhao, Yongxu Pan, Zhen Cheng, Hongguang Liu. Gold nanoparticles for cancer theranostics:Abrief update[J]. Journal of Innovative Optical Health Sciences, 2016, 9(4): 1630004.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!