光电工程, 2019, 46 (2): 180409, 网络出版: 2019-03-17   

大间距轴线一致性检测技术 进展与分析

Development and analysis of large spacing axis consistency detection technology
作者单位
1 中国人民解放军 32181部队,河北石家庄 050000
2 陆军工程大学石家庄校区电子与光学工程系,河北石家庄 050003
摘要
多光学传感器轴线一致性是确保**系统光电任务设备正常工作的重要保证。分析了国内外大间距轴线一致性检测方法与设备研制现状,提出了一种基于非合作目标图像处理技术的轴线一致性检测方法。选择远场中具有典型特征的景物作为非合作目标,通过比较非合作目标在不同图像空间中的位置差异,得到轴线一致性检测结果。该方法避免了其它检测方法体积重量大、对使用环境要求高的缺点,特别适合于大间距平台光电装备野外在线轴线检测,应用前景广阔。
Abstract
The axis consistency of multiple optical sensors is an important guarantee to ensure the normal operation for photoelectric task equipment of weapon system. The presented status quo of methods and equipment are ana-lyzed for measuring the consistency of large spacing axes. An axis consistency detection method is proposed based on non-cooperative target image processing technology. Specifically, it is available to select scenes with typical characteristics in the far field as non-cooperative targets. Then, the axis consistency detection results are obtained by comparing the position differences of non-cooperative targets in different image spaces. Compared with other detection methods and equipment, our method avoids many disadvantages including huge volume, heavy weight and the limited operation environment. Furthermore, it is especially suitable for axis detection of in field and on-line to large-distance photoelectric equipment, which shows a bright application prospect.
参考文献

[1] Ling J, Liu B Q, Zhao X L. The comparison and discussion of several testing methods about optical-axis parallelism[J]. Journal of Applied Optics, 2003, 24(1): 43.45. 凌军, 刘秉琦, 赵熙林. 几种光轴平行性测试方法的比较与探讨 [J].应用光学, 2003, 24(1): 43.45.

[2] Jiang H B. adjusting optical axis parallelism with projection target plate[J]. Ship Science and Technology, 1995(4): 61.65.姜宏滨. 用投影靶板调整光轴平行性[J].舰船科学技术, 1995(4): 61.65.

[3] Liu A M, Gao L M, Wu Y M, et al. ZEMAX auxiliary analysis for effect of rhombic prism surface shape error on parallelism of emergent beam[J]. Journal of Applied Optics, 2009, 30(3): 491.495.刘爱敏, 高立民, 吴易明, 等. ZEMAX辅助分析斜方棱镜面形误差对出射光平行度的影响[J].应用光学, 2009, 30(3): 491.495.

[4] Chang S, Cao Y P, Chen Y Q. Influence of beam turning error of pentagonal prism on wave-front measurement[J]. Journal of Applied Optics, 2006, 27(3): 186.191. 常山, 曹益平, 陈永权. 五角棱镜的光束转向误差对波前测量的影响[J].应用光学, 2006, 27(3): 186.191.

[5] Jin W Q, Wang X, Zhang Q Y, et al. Technical progress and its analysis in detecting of multi-axes parallelism system[J]. Infra-red and Laser Engineering, 2010, 39(3): 526.531.金伟其, 王霞, 张其扬, 等. 多光轴一致性检测技术进展及其分析[J].红外与激光工程, 2010, 39(3): 526.531.

[6] Yang L H, Yang XY, Zhu J G, et al. Novel method for spatial angle measurement based on rotating planar laser beams[J]. Chinese Journal of Mechanical Engineering, 2010, 23(6): 758.764.

[7] Zheng Y Y, Zhu J G, Xue B, et al. Network deployment optimi-zation of indoor workspace measurement and positioning sys-tem[J]. Opto-Electronic Engineering, 2015, 42(5): 20.26.郑迎亚, 邾继贵, 薛彬, 等. 室内空间测量定位系统网络布局优化[J].光电工程, 2015, 42(5): 20.26.

[8] Jaklitsch J J, Ehart A F, Jones D A, et al. Gyroscopic system for boresighting equipment: US7065888B2[P] . 2006-06-27.

[9] Jaklitsch J J, Paturzo V M. Non line of sight boresight based on inertial measurement technology[C]//Proceedings AUTO-TESTCON 2003. IEEE Systems Readiness Technology Con-ference, Anaheim, USA, 2003: 527–533.

[10] Ahmadabadian A H, Yazdan R, Karami A, et al. Clustering and selecting vantage images in a low-cost system for 3D recon-struction of texture-less objects[J]. Measurement, 2017, 99: 185–191.

[11] Guan Y, Wang X J, Yin L, et al. Monocular position and pose measurement method based on surface topography of object[J]. Opto-Electronic Engineering, 2018, 45(1): 170522.关印, 王向军, 阴雷, 等. 基于物体表面形貌的单相机视觉位姿测量方法[J].光电工程, 2018, 45(1): 170522.

[12] Metronor. Next generation boresight system[EB/OL]. http:www.metronor.com/military/.

[13] Yang B W. Research on the key technologies of vision-based assambly pose measurement for large-scale equipments[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.杨博文. 大型装备装配位姿视觉检测的关键技术研究 [D].南京: 南京航空航天大学, 2013.

[14] Weng X, Ye N, Zhang L Y. Effects of the target position on the sensitivity of image point in monocular visual measurement system[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(6): 969–973. 翁璇, 叶南, 张丽艳. 单目视觉测量系统中目标位姿对图像点灵敏度影响的研究[J].机械科学与技术, 2015, 34(6): 969–973.

[15] Hu Y, Xie T B, Liao Z P, et al. Research on aircraft boresight based on photoelectric tracking[J]. Measurement & Control Technology, 2016, 35(10): 124–128.胡禹, 谢天保, 廖祖平, 等. 基于光电跟踪的飞机校靶技术研究 [J].测控技术, 2016, 35(10): 124–128.

[16] Huang P, Wang Q, Yu C J, et al. Accuracy analysis for digital boresighting of aircraft gun[J]. Optics and Precision Engineer-ing, 2013, 21(12): 3102–3110.黄鹏, 王青, 俞慈君, 等. 飞机航炮的数字化校准分析 [J]. 光学精密工程, 2013, 21(12): 3102–3110.

[17] CI Systems. Advanced weapon optical boresight system (O-AWBS)[EB/OL]. (2015-10-12) [2016-07-20]. http://www.ci-systems.com/Advanced-Weapon-Boresight-System-(AWBS).

[18] Cabib D, Rahav A, Barak T. Broad-band optical test bench (OPTISHOP) to measure MTF and transmittance of visible and IR optical components[J]. Proceedings of SPIE, 2007, 6543: 654311.

[19] Carl Zeiss. Calibration and alignment[EB/OL]. http://www.zeiss.com/optronics.

[20] Schill Reglerteknik. Aligner 308 ship alignment system[EB/OL]. http://www.schill.se.

张勇, 吴浩, 马飒飒. 大间距轴线一致性检测技术 进展与分析[J]. 光电工程, 2019, 46(2): 180409. Zhang Yong, Wu Hao, Ma Sasa. Development and analysis of large spacing axis consistency detection technology[J]. Opto-Electronic Engineering, 2019, 46(2): 180409.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!