激光与光电子学进展, 2017, 54 (5): 050006, 网络出版: 2017-05-03   

三维光显示技术研究进展 下载: 1499次

Research Progress on Three-Dimensional Optical Display Technology
作者单位
北京邮电大学信息光子学与光通信国家重点实验室, 北京 100876
摘要
为实现自然的三维光显示, 需按照真实物体的呈现方式, 且同时保证双目视差和平滑的运动视差。回顾国内外三维光显示的研究现状, 重点介绍北京邮电大学在密集视点显示、集成成像显示、光场显示和全息显示方面的研究进展, 认为全视差光场显示和全息显示是未来三维光显示发展的方向。
Abstract
To realize the natural three-dimensional optical display, the presentation style of real objects should be followed, and both the binocular parallax and the smooth motion parallax are required. The research status of the three-dimensional optical display both at home and abroad is reviewed. Research progresses on the dense-viewpoint display, integral imaging display, light field display and holographic display in Beijing University of Posts and Telecommunications are mainly presented. The full-parallax light field display and the holographic display represent the future development direction of three-dimensional optical display.
参考文献

[1] Son J, Javidi B, Yano S, et al. Recent developments in 3D imaging technologies[J]. J Display Technol, 2010, 6(10): 394-403.

[2] Nawrot M, Stroyan K. The motion/pursuit law for visual depth perception from motion parallax[J]. Vision Research, 2009, 49(15): 1969-1978.

[3] McIntire J P, Havig P R, Geiselman E E. Stereoscopic 3D displays and human performance: A comprehensive review[J]. Displays, 2014, 35(1): 18-26.

[4] Hill L, Jacobs A. 3-D liquid crystal displays and their applications[C]. Proceedings of IEEE, 2006, 94(3): 575-590.

[5] Nordin G P, Kulick J H, Lindquist R G, et al. Liquid crystal-on-silicon implementation of the partial pixel three-dimensional display architecture[J]. Appl Opt, 1995, 34(19): 3756-3763.

[6] Chien K W, Shieh H P. Time-multiplexed three-dimensional displays based on directional backlights with fast-switching liquid-crystal displays[J]. Appl Opt, 2006, 45(13): 3106-3110.

[7] Li X, Wang Q, Tao Y, et al. Crosstalk reduction in multi-view autostereoscopic three-dimensional display based on lenticular sheet[J]. Chinese Optics Letters, 2011, 9(2): 021001.

[8] Son J Y, Saveljev V V, Kim J S, et al. Multiview image acquisition and projection[J]. J Display Technol, 2006, 2(4): 359-363.

[9] Hong J, Kim Y, Park S, et al. 3D/2D convertible-type integral imaging using concave half mirror array[J]. Opt Express, 2010, 18(20): 20628-20637.

[10] Takaki Y, Nago N. Multi-projection of lenticular displays to construct a 256-view super multi-view display[J]. Opt Express, 2010, 18(9): 8824-8835.

[11] Mphep W, Huang Y P, Rudquist P, et al. An autosteresoscopic 3D display system based on prism patterned projection screen[J]. J Display Technol, 2010, 6(3): 94-97.

[12] Bogaert L, Meuret Y, Roelandt S, et al. Demonstration of a multiview projection display using decentered microlens arrays[J]. Opt Express, 2010, 18(25): 26092-26106.

[13] Cho M, Daneshpanh M, Moon I, et al. Three-dimensional optical sensing and visualization using integral imaging[C]. Proceedings of IEEE, 2011, 99(4): 556-575.

[14] Kim J, Park G, Kim Y, et al. Elimination of image discontinuity in integral floating display by using adaptive image mapping[J]. Appl Opt, 2009, 48(34): 176-185.

[15] Xu Y, Wang X, Sun Y, et al. Homogeneous light field model for interactive control of viewing parameters of integral imaging displays[J]. Opt Express, 2012, 20(13): 14137-14151.

[16] Okano F, Arai J, Kawakita M. Wave optical analysis of integral method for three-dimensional images[J]. Opt Lett, 2007, 32(4): 364-366.

[17] Son J Y, Javidi B. Three-dimensional imaging methods based on multiview images[J]. J Display Techol, 2005, 1(1): 125-140.

[18] Yi S Y, Chae H B, Lee S H. Moving parallax barrier design for eye-tracing autostereoscopic displays[C]. Proceedings of 3DTV Conference, 2008: 165-168.

[19] Liou J C, Lee K, Huang J F. Low crosstalk multi-view tracking 3-D display of synchro-signal LED scanning backlight system[J]. J Display Technol, 2011, 7(8): 411-419.

[20] Fattal D, Peng Z, Tran T, et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display[J]. Nature, 2013, 495(7441): 348-351.

[21] Blanche P A, Bablumian A, Voorakaranam R, et al. Holographic three-dimensional telepresence using large-area photorefractive polymer[J]. Nature, 2010, 468(7320): 80-83.

[22] Yaras F, Kang H, Onural L. State of the art in holographic displays: A survey[J]. J Display Technol, 2010, 6(10): 443-454.

[23] Smalley D E, Smithwick Q Y J, Bove V M Jr, et al. Anisotropic leaky-mode modulator for holographic video displays[J]. Nature, 2013, 498(7454): 313-318.

[24] Benton S A. Holography reinvented[C]. SPIE, 2002, 4738: 23-26.

[25] Chen B, Zhong Q, Li H, et al. Automatic geometrical calibration for multiprojector-type light field three-dimensional display[J]. Opt Eng, 2014, 53(7): 073107.

[26] Sang X, Fan F C, Jiang C C, et al. Demonstration of a large-size real-time full-color three-dimensional display[J]. Opt Lett, 2009, 34(24): 3803-3805.

[27] Gao X, Sang X Z, Yu X, et al. Aberration analyses for improving the frontal projection three-dimensional display[J]. Opt Express, 2014, 22(19): 23496-23511.

[28] 刘 旭, 李海峰. 基于光场重构的空间三维显示技术[J]. 光学学报, 2011, 31(9): 0900121.

    Liu Xu, Li Haifeng.Spatial three-dimensional display based on the light-field reconstruction[J]. Acta Optica Sinica, 2011, 31(9): 0900121.

[29] Akeley K, Watt S J, Girshick A R. A stereo display prototype with multiple focal distances[J]. ACM Trans Graph, 2004, 23(3): 804-813.

[30] Wetzstein G, Lanman D, Hirsch M, et al. Compressive light field synthesis using multilayer displays with directional backlighting[J]. ACM Trans Graph, 2012, 31(4): 13-15.

[31] Takaki Y, Urano Y, Kashiwada S, et al. Super multi-view windshield display for long-distance image information presentation[J]. Opt Express, 2011, 19(2): 704-116.

[32] Teng D, Liu L, Wang B. Super multi-view three-dimensional display through spatial-spectrum time-multiplexing of planar aligned OLED microdisplays[J]. Opt Express, 2014, 22(25): 31448-31457.

[33] Yu X, Sang X, Xing S, et al. Natural three-dimensional display with smooth motion parallax using active partially pixelated masks[J]. Opt Commun, 2014, 313(4): 146-151.

[34] 桑新柱, 于迅博, 赵天奇, 等. 具有平滑运动视差的三维显示技术[J]. 中国激光, 2014, 41(2): 0209011.

    Sang Xinzhu, Yu Xunbo, Zhao Tianqi, et al. Three-dimensional display with smooth motion parallax[J]. Chinese J Lasers, 2014, 41(2): 0209011.

[35] Yu X, Sang X, Chen D, et al. Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch[J]. Chinese Optics Letters, 2015, 12(6): 060008.

[36] Wang P, Xie S, Sang X, et al. A large depth of field frontal multi-projection three-dimensional display with uniform light field distribution[J]. Opt Commun, 2015, 354: 321-329.

[37] Yu X, Sang X, Gao X, et al. Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues[J]. Opt Express, 2015, 23(20): 25950-25958.

[38] Yang S, Sang X, Gao X, et al. Influences of the pickup process on the depth of field of integral imaging display[J]. Opt Commun, 2017, 386: 22-26.

[39] Xing S, Sang X, Yu X, et al. High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction[J]. Opt Express, 2017, 25(1): 330-338.

[40] Sang X, Fan F, Choi S, et al. Three-dimensional display based on the holographic functional screen[J]. Opt Eng, 2011, 50(9): 091303.

[41] Chen D, Sang X, Yu X, et al. Performance improvement of compressive light field display with the viewing-position-dependent weight distribution[J]. Opt Express, 2016, 24(26): 29781-29793.

[42] Chen Z, Sang X, Lin Q, et al. Acceleration for computer-generated hologram in head-mounted display with effective diffraction area recording method for eyes[J]. Chinese Optics Letters, 2016, 14(8): 080901.

[43] Chen Z, Sang X, Lin Q, et al. A see-through holographic head-mounted display with the large viewing angle[J]. Opt Commun, 2017, 384: 125-129.

桑新柱, 于迅博, 陈铎, 高鑫, 王鹏, 邢树军, 余重秀. 三维光显示技术研究进展[J]. 激光与光电子学进展, 2017, 54(5): 050006. Sang Xinzhu, Yu Xunbo, Chen Duo, Gao Xin, Wang Peng, Xing Shujun, Yu Chongxiu. Research Progress on Three-Dimensional Optical Display Technology[J]. Laser & Optoelectronics Progress, 2017, 54(5): 050006.

本文已被 13 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!