光通信研究, 2020 (2): 61, 网络出版: 2020-11-11  

基于二分法改进的Chirp信号参数估计算法

Chirp Signal Parameter Estimation Algorithm based on Dichotomy
作者单位
重庆邮电大学 通信与信息工程学院, 重庆 400065
摘要
针对啁啾(Chirp)信号参数估计的高复杂度和在低信噪比(SNR)下保持高精度等问题, 文章提出了一种改进的Chirp信号参数估计算法。该算法根据当信号能量和周期长度一定时Chirp信号频谱幅度的平方与调频率成反比的特性, 不断地产生已知Chirp信号的共轭与未知Chirp信号相乘, 找到使相乘后频谱幅度平方最大的已知Chirp信号的调频率。为了做到参数估计的高精度, 用修正的幅度插值(M-Rife)算法估计中心频率和修正相乘后信号频谱的幅值。将该算法与短时傅里叶变换(STFT)结合, 首先用STFT估计出调频率的大致范围和信号周期, 然后用二分法代替等步长使改进的Chirp信号参数估计算法在这个大致范围内搜索, 极大地降低了计算复杂度。实验结果表明, 在SNR≥-10 dB时, 该算法估计调频率归一化均方误差(NMSE)要优于分数阶傅里叶变换(FRFT)约1~2 dB, 接近克拉美罗下界(CRLB)。
Abstract
The Chirp signal parameter estimation has the problems of high computational complexity and low precision under low Signal-to-Noise Ratio (SNR). In order to solve these issues, an improved Chirp parameter estimation algorithm is proposed. According to the Chirp signal energy and the signal period, the square of the signal spectrum amplitude is inversely proportional to the frequency modulation slope. The Chirp signal is multiplied by the unknown Chirp signal to find the known Chirp signal with the largest square of the spectral amplitude. In order to achieve the parameter estimation with high accuracy, the Modified Rife (M-Rife) is used to estimate the center frequency and correct the amplitude of the multiplied signal. The algorithm is combined with the Short-Time Fourier Transform (STFT). First, STFT is used to estimate the approximate range and signal period of Chirp. The dichotomy is used instead of the equal step size to allow the improved Chirp signal parameter estimation algorithm to search within this approximate range, resulting in significant complexity reduction. The experimental results show that when the SNR is not less than -10 dB, the Normalized Mean Square Error (NMSE) of modulation frequency estimated by our proposed algorithm is better than Fractional Fourier Transform (FRFT) by 1~2 dB. When the signal-to-noise ratio is not less than -10 dB, the NMSE of center frequency estimated by our proposed algorithm is significantly better than FRFT and close to the Cramer-Rao Low Bound (CRLB) line.
参考文献

[1] Springer A, Gugler W, Huemer M, et al. A Wireless Spread-Spectrum Communication System Using SAW Chirped Delay Lines[J]. IEEE Transactions on Microwave Theory and Techniques, 2001, 49(4): 754-760.

[2] IEEE Standard 802.15.4a-2007, Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANS)[S].

[3] Wang J Z, Su S Y, Chen Z P. Parameter Estimation of Chirp Signal under Low SNR[J]. Science China (Information Sciences), 2015, 58(2): 1-13.

[4] Wu Y,Li X.Elimination of Cross-Terms in the Wigner-Ville Distribution of Multi-Component LFM Signals[J]. IET Signal Processing,2017,11(6):657-662.

[5] Erdogan A Y, Gulum T O, Durak-Ata L, et al. FMCW Signal Detection and Parameter Extraction by Cross Wigner–Hough Transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(1): 334-344.

[6] White P R, Locke J. Performance of Methods based on the Fractional Fourier Transform for the Detection of Linear Frequency Modulated Signals[J]. IET Signal Processing, 2012, 6(5): 478-483.

[7] Cui K B, Chen X, Huang J J, et al. DOA Estimation of Multiple LFM Sources Using a STFT-Based and FBSS-Based MUSIC Algorithm[J]. Radioengineering, 2017, 26(4): 1126-1137.

[8] Chen Y, Guo L, Gong Z. The Concise Fractional Fourier Transform and Its Application in Detection and Parameter Estimation of the Linear Frequency-Modulated Signal[J]. Chinese Journal of Acoustics, 2017, 36: 70-86.

[9] 韩孟飞, 王永庆, 吴嗣亮, 等. 一种低信噪比下LFM信号参数快速估计算法[J]. 北京理工大学学报, 2009, 29(2): 147-151.

[10] 邓振淼, 刘渝, 王志忠. 正弦波频率估计的修正Rife算法[J]. 数据采集与处理, 2006, 21(4): 473-477.

[11] Peleg S, Porat B. The Cramer-Rao Lower Bound for Signals with Constant Amplitude and Polynomial Phase[J]. IEEE Transactions on Signal Processing, 1991, 39(3): 749-752.

刘国峰, 廖烨, 李康, 周文峰. 基于二分法改进的Chirp信号参数估计算法[J]. 光通信研究, 2020, 46(2): 61. LIU Guo-feng, LIAO Ye, LI Kang, ZHOU Wen-feng. Chirp Signal Parameter Estimation Algorithm based on Dichotomy[J]. Study On Optical Communications, 2020, 46(2): 61.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!