红外与激光工程, 2016, 45 (4): 0425002, 网络出版: 2016-05-11  

THz波大气探测仪器发展现状研究

Development study of THz instruments for atmospheric sounding
作者单位
解放军理工大学 气象海洋学院, 江苏 南京 211101
摘要
THz波在电磁波谱中位于微波至红外波段的过渡区域, 其特性在空间研究及应用领域具有独特的优势, THz频段的大气遥感仪器可以为探测地球大气信息提供全新的视角, 在大气科学领域展现出良好的应用前景。介绍了THz技术在大气探测领域的主要应用, 综述了国内外THz频段的大气观测仪器的研究现状, 通过各仪器关键指标参数的对比分析, 总结了THz大气观测仪器的发展趋势及发展前景, 并提出了发展THz大气遥感技术的建议。
Abstract
THz wave lies in the region between the microwave and infrared range in the electromagnetic spectrum. There are unique advantages for THz wave in the space research and application field. THz remote sensing instruments can provide a new perspective for the exploration of the earth′s atmosphere. As a result, THz technology has a good prospection the field of atmospheric science. The main applications of THz technology in the field of atmospheric sounding were introduced. The current research status of THz atmospheric observation instruments at home and abroad were summarized. By comparison and analysis of key parameters of each instrument, the development trend and the development prospect of THz instruments for atmospheric observation were summarized. Meanwhile, the suggestions for developing THz atmospheric remote sensing technology were presented.
参考文献

[1] 姚建铨, 汪静丽, 钟凯, 等. THz辐射大气传输研究和展望[J]. 光电子·激光, 2010, 21(10): 1582-1588.

    Yao Jianquan, Wang Jingli, Zhong Kai, et al. Study and outlook of THz radiation atmospheric propagation[J]. Journal of Optoelectronics·Laser, 2010, 21(10): 1582-1588. (in Chinese)

[2] Peter H Siegel. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928.

[3] Peter H Siegel. Terahertz pioneers: a series of interviews with significant contributors to terahertz science and technology [J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 409.

[4] Jana Mendrok, Dong L Wu, Stefan A Buhler, et al. Sub-millimeter wave radiometer for observation of cloudice-aproposal for Japanese mission [C]//Sensors, Systems, and Next-Generation Satellites XIII SPIE, 2009, 7474: 74740T.

[5] Paul B Hays, Hilary E Snell. Atmospheric remote sensing in the terahertz region[C]//First International Symposium on Space Terahertz Technology, 1990: 482-491.

[6] Cathy Clerbaux, Solene Turquety, Pierre Coheur. Infrared remote sensing of atmospheric composition and air quality: towards operational applications[J]. Comptes Rendus Geoscience, 2010, 342(4): 349-356.

[7] Paulo Pampaloni, S Paloscia. Microwave Radiometry and Remote Sensing of the Earth′s Surface and Atmosphere [M]. Netherlands: VSP, 2000: 263-282.

[8] Yang P, Liou K N, Bi L, et al. On the radiative properties of ice clouds: Light scattering, remote sensing, and radiation parameterization [J]. Adv Atmos Sci, 2015, 32(1): 32-63.

[9] Michael A Lefsky, Warren B Cohen, Geoffrey G Parker, et al. Lidar remote sensing for ecosystem studies [J]. Bioscience, 2002, 52(1): 19-30.

[10] Klein U. Future satellite earth observation requirements and technology in millimetre and sub-millimetre wavelength region [C]//The 17th Int Symp on Space THz Technology, 2006: 21-28.

[11] Peter H Siegel. THz instruments for space [J]. IEEE Transactions on Antennas and Propagation, 2007, 55(11): 2957-2965.

[12] Peter H Siegel. THz for space: the golden age [J]. IEEE Xplore, 2010, 978(1): 816-819.

[13] Rothman L S, Gordon I E, Babikov Y, et al. The HITRAN2012 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2013, 130: 4-50.

[14] Podobedov V B, Plusquellic D F, Siegrist K E, et al. New measurements of the water vapor continuum in the regionfrom 0.3 to 2.7 THz[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2008, 109: 458-467.

[15] David M Slocum, Thomas M Goyette, Elizabeth J Slingerland, et al. Terahertz atmospheric attenuation and continuum effects[C]//SPIE DSS Conference, 2013, 8716: 871607-1-871607-14.

[16] David M Slocum, Thomas M Goyette, Robert H Giles. High-resolution terahertz atmospheric water vapor continuum measurements[C]//Terahertz Physics, Devices, and Systems VIII: Advanced Applications in Industry and Defense, 2014, 9102: 91020E.

[17] Kasai Yasuko. Terahertz-wave remote sensing: introduction to terahertz-wave remotesensing [J]. Journal of the National Institute of Information and Communications Technology, 2008, 55(1): 79-81.

[18] Kasai Yasuko, Ochiai Satoshi, Mendrok Jana, et al. THz remote sensing for water vapor and cloud observation[C]//37th COSPAR Scientific Assembly, 2008: 1456-1463.

[19] Blackwell W J, Staelin D H. Comparative performance analysis of passive microwave systems for tropospheric sounding of temperature and water vapor profiles[C]//Proceedings of SPIE, 1996, 2812: 472-478.

[20] Cho H -M, Zhang Z, Meyer K, et al. Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans[J]. J Geophys Res Atmos, 2015, 120(9): 4132-4154.

[21] Vidot J, Baran A J, Brunel P. A new ice cloud parameterization for infrared radiative transfer simulation of cloudy radiances: evaluation and optimization with IIR observations and ice cloud profile retrieval products[J]. J Geophys Res Atmos, 2015, 120(14): 6937-6951.

[22] Gong J, Wu D L. CloudSat-constrained cloud ice water path and cloud top height retrievals from MHS 157 and 183.3 GHz radiances[J]. Atmospheric Measurement Techniques, 2014, 7(6): 1873-1890.

[23] Jana Mendrok, Philippe Baron, Yasuko Kasaia. Studying the potential of terahertz radiation for deriving ice cloud microphysical information[C]//Remote Sensing of Clouds and the Atmosphere XIII, 2008, 7107: 710704.

[24] De Lucia F C, Petkie D T. THz gas sensing with submillimetertechniques[C]//SPIE, 2005, 5790: 44-53.

[25] De Lucia F C, Petkie D T. The physics and chemistry of THz sensors and imagers: long-standing applications, new opportunities, and pitfalls[C]//SPIE, 2005, 5989: 598911.

[26] Jacobsen R H, Mittleman D M, Nuss M C. Gas sensing using terahertz time-domain spectroscopy[J]. Opt Lett, 1996, 21(24): 2011-2013.

[27] Alexander Kellarev, Dan Sheffer. Terahertz remote sensing [C]//Terahertz Physics, Devices, and Systems V: Advance Applications in Industry and Defense, 2011: 80230N.

[28] Phillips T G, Keene J C. Submillimeter astronomy[C]// IEEE, 1992, 80(11): 1662-1678.

[29] Salomonovich A E, Solomonov S V, KhaikinA S, et al. Satellite measurements of submillimetre radiation of the earth′s atmosphere[C]//Space research XVI: Proceedings of the Open Meetings of Working Groups on Physical Sciences and Symposium and Workshop on Results from Coordinated Upper Atmosphere Measurement Programs, 1976: 155-159.

[30] Salomonovich A E, Bakun V N, Kovalev V S, et al. A submillimeter telescope for the orbitalpiloted station Salyut-6[J]. Telecomm Radio Eng, 1979, 34(2): 82-88.

[31] Wilheit T T, A Al-Khalaf. A simplified interpretation of the radiances from the SSM/T-2[J]. Meteorology and Atmospheric Physics, 1994, 54(1): 203-212.

[32] Galin I, Brest D H, Martner G R. The DMSP SSMT/2microwave water-vapor profiler[C]//SPIE OE/Aerospace and RemoteSensing Int Symp, 1993.

[33] Byung-Ju Sohn, Eui-Seok Chung, Johannes Schmetz, et al. Estimating upper-tropospheric water vapor from SSM/T-2 satellite measurements[J]. J Appl Meteor, 2003, 42: 488-504.

[34] Waters J W, Read W G, Froidevaux L, et al. The UARS and EOS microwave limb sounder (MLS) experiments [J]. Journal of the Atmospheric Sciences, 1998. 56: 194-218.

[35] Joe W Waters, Gordon E Peckham. The microwave limb sounder(MLS) experiments for UARS and EOS [J]. The International Society for Optical Engineering, 1991: 543-546.

[36] Hugh C Pumphrey, Hannah L Clark, Robert S Harwood. Lower stratospheric water vapor measured by UARS MLS [J]. Geophysical Research Letters, 2000, 27(12): 1691-1694.

[37] Barath F T, Chavez M C, Cofield R E, et al. The upper atmosphere research satellite microwave limb sounder instrument[J]. J Geophys Res, 1993, 98(10): 751-762.

[38] Neugebauer G, Habing H J, van Duinen R, et al. The infrared astronomical satellite(IRAS) mission[J]. Astrophys J, 1984, 278(2): L1-L6.

[39] Murtagh Donal, Frisk Urban, Merino Frank, et al. An overview of the Odin atmospheric mission [J]. Canadian Journal of Physics, 2002, 80(4): 357-368.

[40] Ph Baron, Ph Ricaud, J de la No, et al. Studies for the Odin sub-millimetre radiometer. II: Retrieval methodology [J]. Canadian Journal of Physics, 2002, 80(4): 341-356.

[41] Urban J, Lautie N, Le Flochmoez E, et al. Odin/SMR limb observations of stratospheric trace gases: Validation of N2O[J]. Journal of Geophysical Research, 2005, 110: D09301- D09320.

[42] Mark R Schoeberl, Anne R Douglass, Ernest Hilsenrath, et al. Overview of the EOS Aura mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1066-1074.

[43] Krotkov N A, McLinden C A, Li C, et al. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2014 [J]. Atmos Chem Phys Discuss, 2015, 15: 26555-26607.

[44] Pickett H M. Microwave limb sounder THz module on Aura[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(5): 1122-1130.

[45] Gaidis M C, Pickett H M, Smith C D, et al. A 2.5 THz receiver front-end for spaceborne applications[J]. IEEE Transactions on Microwave Theory Techniques, 2000, MTT-48(4): 733-739.

[46] Junji Inatani, Hiroyuki Ozeki, Ryouta Satoh, et al. Submillimeter limb-emission sounder JEM/SMILES aboard the Space Station[C]//Microwave Remote Sensing of the Atmosphere and Environment II, 2000, 4152: 243.

[47] Seta M, Masuko H, Manabe T, et al. Submillimeter-wave SIS receiver for JEM/SMILES[J]. Adv Space Res, 2000, 26(6): 1021-1024.

[48] Sagawa H, Sato T O, Baron P, et al. Comparison of SMILES ClO profiles with satellite, balloon-borneand ground-based measurements[J]. Atmos Meas Tech, 2013, 6: 3325-3347.

[49] Fujii Y, Kikuchi K, Inatani J, et al. Space-borne 640-GHz receiver based on 4-K mechanicalcooler[J]. Astronomical Telescopes and Instrumentation, 2000, 4013: 90-99.

[50] Perrin A, Puzzarini C, Colmont J M, et al. Molecular line parameters for the "MASTER" (Millimeter Wave Acquisitions for Stratosphere/Troposphere Exchange Research) database [J]. Journal of Atmospheric Chemistry, 2005, 51(2): 161-205.

[51] Matthew Oldfield, Brian P Moyna, Elie Allouis, et al. MARSCHALS: development of an airborne millimeter-wave limb sounder[C]//Sensors, Systems, and Next-Generation Satellites V, 2001, 4540: 450663.

[52] Eric Defer, Carlos Jimenez, Catherine Prigent. Sub-millimetre wave radiometry for cloud and rain characterization: from simulation to Earth observation mission concept[J]. C R Pyhsique, 2011, 10: 1016-1023.

[53] Joe K Taylor, Henry E Revercomb, Fred A Best, et al. The infrared cloud Ice radiometer (IRCIR)[C]//Infrared Technology and Applications XXXIII, 2007, 6542: 65423H.

[54] L′Ecuyer, Tristan S, Greenwald T, et al. Information content analysis in supportof a new infrared cloud ice radiometer for SIRICE [C]//Conference on Satellite Meteorology and Oceanography, 2006.

[55] Buehler S A, Jimenez C, Evans K F, et al. A concept for a satellite mission to measure cloud ice water path, ice particle size, and cloud altitude [J]. Quarterly Journal of the Royal Meteorological Society, 2007, 133(S2): 109-128.

[56] Zhao Haibo, Zheng Cheng, Zhang Yongfang, et al. Information content analysis for the millimeter and sub-millimeter wave atmospheric sounding data from geostationary orbit[J]. Progress in Electromagnetics Research M, 2014, 35: 183-191.

[57] Buehler S A, Defer E, Evans F, et al. Observing ice clouds in the submillimeter spectral range: the Cloud Ice mission proposal for ESA′s Earth Explorer 8[J]. Atmos Meas Tech, 2012, 5: 1529-1549.

[58] Brian Moyna, Clare Lee, Janet Charlton, et al. ISMAR: towards a submillimetre-wave airborne demonstrator for the observation ofprecipitation and ice clouds [C]//Twenty-First International Symposium on Space Terahertz Technology 2010: 185.

[59] Winnewisser G . Submillimeter wave spectroscopy in astronomy related to the ESA-project FIRST(Far InfraRed Submillimetre space Telescope)[C]//SPIE, 1986, 598: 2-7.

[60] Wellard S, Bingham G, Latvakoski H, et al. Far-infrared spectroscopy of the troposphere(FIRST): flight performance and data processing [J]. Infrared Spaceborne Remote Sensing XIV, 2006, 6297: 62970Q.

[61] Gert de Lange, Manfred Birk, Dick Boersma, et al. Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder[J]. Supercond Sci Technol, 2010, 23(4): 45016-45023.

[62] Fuerholz P, Murk A. Phase-corrected near-fieldmeasurements of the TELIS telescope at 637 GHz[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(9): 2518-2525.

[63] Suttiwong N, Birk M, Stefan B. Development and characterization of the balloon-borne instrument TELIS (TErahertz and Submm Limb Sounder): 1.8 THz receiver [C]//Proceedings of the 19th ESA Symposium on European Rocket and Balloon Programsand Related Research, 2009: 165-168.

[64] Xu J, Schreier F, Vogt P, et al. A sensitivity study for far infrared balloon-borne limb emission sounding of stratospheric trace gases[J]. Geosci Instrum Method Data Syst Discuss, 2013, 3: 251-303.

[65] Evans K F, Walter S J, Heymsfield A J, et al. The submillimeter-wave cloud ice radiometer (SWCIR): Simulations of retrieval algorithm performance[J]. Journal of Geophysical Research-Atmospheres, 2002, 107: 4028- 4052.

[66] Franklin Evans K, Steven J Walter, Andrew J Heymsfield, et al. Submillimeter-wave cloud ice radiometer: simulations of retrieval algorithm performance [J]. Journal of Geophysical Research, 2002, 107(D3): 4028-4048.

[67] Vanek M D, Nolt I G, Tappan N D, et al. Far-infrared sensor for cirrus(FIRSC): an aircraft-based Fourier-transform spectrometer to measure cloud radiance[J]. Appl Opt, 2001, 40(13): 2169-2176.

[68] Melnick G J, Dalgarno A, Fazio N R, et al. The submillimeter wave astronomy satellite: Science objectives and instrument description[J]. Astrophys J Lett, 2000, 539(2): L77-L85.

[69] Evans K F, Wang J R, Starr D O′C, et al. Ice hydrometeor profile retrieval algorithm for high-frequency microwave radiometers: application to the CoSSIR instrument during TC4[J]. Atmospheric Measurement Techniques, 2012, 5: 2277-2306.

[70] Evans K F, Wang J R, Racette P E, et al. Ice cloud retrievals and analysis with the compact scanning submillimeter imaging radiometer and the cloud radar system during CRYSTAL FACE[J]. American Meteorological Society, 2005, 44: 839-859.

[71] Miao J, Johnsen K -P, Buehler S, et al. The potential of polarization measurements from space at mm andsub-mm wavelengths for determining cirrus cloud parameters [J]. Atmos Chem Phys, 2003, 3: 39-48.

高太长, 李书磊, 刘磊, 黄威. THz波大气探测仪器发展现状研究[J]. 红外与激光工程, 2016, 45(4): 0425002. Gao Taichang, Li Shulei, Liu Lei, Huang Wei. Development study of THz instruments for atmospheric sounding[J]. Infrared and Laser Engineering, 2016, 45(4): 0425002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!