红外与激光工程, 2017, 46 (1): 0117002, 网络出版: 2017-03-29   

APOSOS光电望远镜空间目标观测精度分析

Observational accuracy analysis of space object with APOSOS photo-electric telescope
于欢欢 1,2,*沈鸣 1,2高鹏骐 1,2孙明国 1,2郭效忠 1,2赵有 1,2
作者单位
1 中国科学院国家天文台, 北京 100012
2 中国科学院大学, 北京 100049
摘要
利用内符合精度和外符合精度两种精度判定方法, 对国内首台基于APOSOS亚太地基光学空间物体观测系统)项目安装在国外的15 cm 地基空间碎片光电观测望远镜获得的观测数据进行了观测精度计算分析。经过计算分析, 得到内符合精度在5″左右; 利用全球激光测距服务系统提供的综合激光测距数据格式标准点资料对Lageos1、Lageos2和Ajisai卫星进行精密定轨, 进而获得这些卫星的精密轨道, 并以此精密轨道作为APOSOS 15 cm光电望远镜观测数据外符合精度的评定依据, 得到外符合精度大约在6″左右。计算分析结果表明: 系统的观测精度较高, 达到了设计指标, 能够满足科研和工程应用的需要。
Abstract
Based on APOSOS (asia-pacific ground-based optical space observation system) project, the first 15 cm ground-based space debris photo-electric telescope manufactured by China was firstly installed abroad and obtained much observational data. The paper calculated and analyzed the observational accuracy of observational data using two accuracy estimation criterion-internal fitting accuracy and external fitting accuracy estimation, and the result of internal fitting accuracy is on 5 arc seconds; then, obtained precise orbit of satellite Lageos1, Lageos2 and Ajisai derived from precise orbit determination which made use of satellite laser ranging normal point data from International Laser Ranging Service(ILRS), and the analysis of external fitting accuracy was based on the precise orbit, the result of external fitting accuracy was around 6 arc seconds. All the results indicate that APOSOS 15 cm opto-electric telescope has relatively high observational accuracy and reaches the design specification, which can satisfy the demands for science and engineering application.
参考文献

[1] 李语强, 李荣旺, 李祝莲, 等. 空间碎片激光测距应用研究[J]. 红外与激光工程, 2015, 44 (11): 3324-3329.

    Li Yuqiang, Li Rongwang, Li Zhulian, et al. Application research on space debris laser ranging[J]. Infrared and Laser Engineering, 2015, 44(11): 3324-3329. (in Chinese)

[2] 朱飞虎, 王立, 郭绍刚, 等. 面向非合作目标的大动态范围激光测距系统[J]. 红外与激光工程, 2014, 43(S1): 8-12.

    Zhu Feihu, Wang Li, Guo Shaogang, et al. Large dynamic range laser ranging system for non-cooperative target[J]. Infrared and Laser Engineering, 2014, 43(S1): 8-12. (in Chinese)

[3] 高鹏骐, 赵有, 张伟, 等. 亚太地基光学空间物体观测系统项目进展与展望[C]// 第七届空间碎片会议论文集, 2013: 37-40.

    Gao Pengqi, Zhao You, Zhang Wei, et al. Progress and outlook of APOSOS project[C]// Proceedings of Seventh National Conference on Space Debris, 2013: 37-40. (in Chinese)

[4] 孙明国, 刘承志, 范存波, 等. 基于SLR精密轨道的天文定位精度分析[J]. 天文学报, 2012, 53(2): 153-160.

    Sun Mingguo, Liu Chengzhi, Fan Cunbo, et al. Analysis on the accuracy of celestial positioning based on SLR precise orbit[J]. Acta Astronomica Sinica, 2012, 53(2): 153-160. (in Chinese)

[5] 李语强, 熊耀恒. 空间碎片观测精度分析[J]. 天文研究与技术, 2006, 3(1): 21-27.

    Li Yuqiang, Xiong Yaoheng. Observational accuracy analysis of space debris[J]. Astronomical Research & Technology, 2006, 3(1): 21-27. (in Chinese)

[6] 韩雪冰, 张景旭, 赵金宇, 等. 平式光电望远镜目标定位误差的预测[J]. 光学 精密工程, 2010, 18(7): 1595-1604.

    Han Xuebing, Zhang Jingxu, Zhao Jinyu, et al. Forecast for orientation errors of alt-alt photo electric telescope[J]. Optics and Precision Engineering, 2010, 18(70): 1595-1604. (in Chinese)

[7] 马跃, 阳凡林, 卢秀山, 等. 对地观测星载激光测高系统高程误差分析[J]. 红外与激光工程, 2015. 44(3): 1042-1047.

    Ma Yue, Yang Fanlin, Lu Xiushan, et al Elevation error analysis of spaceborne laser altimeter for earth observation[J]. Infrared and Laser Engineering, 2015, 44(3): 1042-1047. (in Chinese)

[8] 鲁春林, 张晓祥, 顾光德.空间目标实时天文定位方法[P].中国专利: CN1710377, 2005.12.2

    Lu Chunlin, Zhang Xiaoxiang, Gu Guangde. Real-time celestial positioning method of space object[P]. Chinese Patent:CN1710377, 2005. 12. 2. (in Chinese)

[9] 高昕, 王建立, 唐嘉. 低轨微小卫星及小碎片搜索/跟踪机动式大视场光电望远镜[J].中国光学, 2011, 4(2): 124-128.

    Gao Xin, Wang Jianli, Tang Jia. Mobile telescope with large FOV for searching and tracking low-orbit micro-satellites and space debris[J]. Chinese Optics, 2011, 4(2): 124-128. (in Chinese)

[10] 李振伟, 杨文波, 张楠. 水平式光电望远镜静态指向误差的修正[J]. 中国光学, 2015, 8(2): 263-269.

    Li Zhenwei, Yang Wenbo, Zhang Nan. Static pointing error of level mounting optoelectronic telescope[J]. Chinese Optics, 2015, 8(2): 263-269. (in Chinese)

[11] 陈艳玲, 黄勇, 胡小工, 等. CCD测角与激光测距技术综合测定空间目标的轨道[J].中国科学院上海天文台, 2014(35): 112-121.

    Chen Yanling, Huang Yong, Hu Xiaogong, et al. Space target′s orbit determination using CCD and SLR techniques[J]. Annals of Shanghai Astronominal Observatory, 2014(35): 112-121. (in Chinese)

[12] 李振伟, 张涛, 孙明国. 星空背景下空间目标的快速识别与精密定位[J].光学 精密工程, 2015, 23(2): 589-599.

    Li Zhenwei, Zhang Tao, Sun Mingguo. Fast recognition and precise orientation of space objects in star background [J]. Optics and Precision Engineering, 2015, 23(2): 589-599. (in Chinese)

[13] 李济生.航天器轨道确定[M].北京: 国防工业出版社, 2003: 260-280.

    Li Jisheng. Orbit Determination of Spacecraft[M].Beijing: National Defend Industry Press, 2003: 260-280. (in Chinese)

[14] 吴连大. 人造卫星与空间碎片的轨道和探测[M]. 北京: 中国科学技术出版社, 2011: 264-293.

    Wu Lianda. Orbit and Detection of Satellite and Space Debris[M]. Beijing: Science and Technology of China Press, 2011: 264-293. (in Chinese)

于欢欢, 沈鸣, 高鹏骐, 孙明国, 郭效忠, 赵有. APOSOS光电望远镜空间目标观测精度分析[J]. 红外与激光工程, 2017, 46(1): 0117002. Yu Huanhuan, Shen Ming, Gao Pengqi, Sun Mingguo, Guo Xiaozhong, Zhao You. Observational accuracy analysis of space object with APOSOS photo-electric telescope[J]. Infrared and Laser Engineering, 2017, 46(1): 0117002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!