牛海鹏 1,2颜昌翔 1王一霖 1,2管海军 1,3[ ... ]邵建兵 1,*
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
3 长春长光智欧科技有限公司,吉林 长春 130033
为了解决局部对比度方法在用于星图空间目标检测时存在运算量大和去除背景噪声困难的问题,提出了一种基于快速局部对比度和目标特征的方法来检测目标。在对比度计算前、对比度计算中和对比度计算后3个环节,分别提高了算法实时性、对复杂背景的抑制和去除噪声。首先,通过中值滤波去除高频噪声;然后,通过快速局部极大值滤波确定目标区域,通过局部对比度计算抑制背景,突出目标成像特征;最后,根据目标成像特征,设置目标能量分布、目标能量集中和目标能量传递3个特征函数,通过设置特征阈值去除噪声,提取真实目标。实验结果表明,本文所提方法在检测率和时间消耗上均具有优越性,对于信噪比为1.5的目标有95%的检测率,平均耗时仅为某些对比方法的1/30~1/6。本文所提方法更适用于星图复杂背景条件下的目标快速检测,满足星图空间目标检测算法鲁棒性强、实时性高的要求。
星图空间目标 目标检测 人类视觉系统 局部对比度 快速极大值滤波 目标特征 star map space object object detection human visual system local contrast fast maximum filtering target feature 
液晶与显示
2024, 39(1): 69
作者单位
摘要
1 长春理工大学物理学院, 吉林 长春 130022 白城师范学院, 吉林 白城 137000
2 长春理工大学物理学院, 吉林 长春 130022
3 宇航动力学国家重点实验室, 陕西 西安 710043
4 中国科学院天文台长春人造卫星观测站, 吉林 长春 130117
5 光电对抗测试评估技术重点实验室, 河南 洛阳 471000
空间目标由于距地相对较远, 且散射光信号受到大气介质的强散射, 在地基测量中很难获取到目标的准确信息。 近年来光谱观测技术蓬勃发展, 由此为空间目标测量提供了新的方案, 但在采集的目标光谱信息中, 由于目标轨道高度、 材料组成等大多相近, 很难直接从光谱曲线中分辨出目标。 为此基于双向反射分布函数(BRDF)散射理论, 建立了空间目标散射光谱成像模型, 并由1.2 m口径地基观测平台与光谱视频成像系统实验测量了一组高轨道同步卫星(GEO)目标, 光谱范围为400~720 nm, 光谱分辨率为2 nm。 采用径向基神经网络算法对光谱数据中的BRDF进行解混, 实验测量了六种空间目标典型材料的BRDF。 由于目标相对较远, 已经超出探测系统的衍射极限, 因此目标可视为点目标, 但在地基测量中大气层是阻隔在探测系统和目标之间的重要屏障, 目标光信号穿过大气层时会受到大气介质的强烈散射, 这种散射虽然很大程度上削弱了光信号, 但同时光信号也被按原结构放大。 依据光学记忆效应, 目标光信号穿过均匀大气介质后其结构仍保持不变。 基于以上分析, 目标光斑图像应该保留有目标投影结构的信息。 为此采用针对目标光斑图像纹理区域分割反演的方法, 将目标光斑划分为10个纹理区域, 并提取对应光谱数据。 通过探测系统传递函数标定以及减噪处理, 获得了观测时段在轨目标空间几何角度下的光谱曲线。 再利用建立的典型材料光谱数据库进行拟合反演。 结果表明: 在2号、 5号、 10号纹理区域反演出了区别于其他区域不同的材料类型。 同时, 反演的各纹理区的材料面积比也有较大不同。 为进一步评估拟合结果, 采用非奇异矩阵对拟合效果进行评价, 分析了扰动方程, 拟合准确率最高为85.283 3, 最低为76.982 7。 这说明拟合结果是相对真实的, 目标散斑图像中含有可分辨的目标投影结构信息。 此研究为揭开点目标成像探测和散斑图像结构识别提供了新的方向。
空间目标 散射光谱成像 光谱反演 Space object Scattering spectral imaging Spectral inversi 
光谱学与光谱分析
2023, 43(10): 3023
李智 1汪夏 1徐灿 1李鹏 2[ ... ]冯飞 3
作者单位
摘要
1 航天工程大学, 北京 101416
2 中国人民解放军63920部队, 北京 100094
3 北京跟踪与通信技术研究所, 北京 100094
随着“2020 SO身份之谜”的落幕, 空间目标的光谱表征及识别技术在空间领域感知中的地位再次凸显。 光谱表征及识别技术的突出优点是能够通过空间目标表面反射的光谱识别出其材料, 进而确认空间目标的身份及类型。 该技术在图像不具备空间分辨率的前提下, 仍然能够较准确地识别出材料, 因此通过低成本小口径望远镜进行空间目标材料表征的可行性得到验证。 在这一点上, 传统的观测手段很难做到的。 2000年, Jorgensen的博士论文在该领域内引起了广泛的关注, 从此开启了空间目标光谱表征的研究热潮。 然而, 经历了20余年的发展, 空间目标的光谱表征及识别技术在实际应用中仍然受到了较大的限制, 这与空间目标的光谱表征方式以及空间环境的复杂性和未知性有着较大的关系。 研究者们通常以地面实验室内的测量数据为依据对实际在轨目标进行表征和识别, 而空间环境的作用却导致了两种测量结果之间存在着无法被描述的差异。 光谱解混法是空间目标材料识别的主流方法, 对其原理和应用情况进行了详细的介绍, 并指出实验室测量结果与实测结果之间的差异是造成解混不成功的主要原因。 解混识别的准确率很大程度上取决于光谱数据库的完善程度, 因此在建立光谱数据库时需要重点考虑空间环境和观测几何对空间目标光谱特性的影响。 同时, 人工智能算法的引入也将大大提高空间目标光谱表征及识别的能力。 从空间目标光谱特性及分类研究、 空间目标材料表征及识别研究、 空间目标光谱的红化现象、 光谱数据库的发展情况四个方面进行了详细的综述及讨论, 分析了其中的难点和重点问题, 凝练出了一些具有参考价值的建设性意见, 希望能够给广大研究者提供便利。
空间目标 光谱表征 材料识别 红化 解混 Space object Spectral characterization Material identification Reddening Unmixing 
光谱学与光谱分析
2023, 43(5): 1329
作者单位
摘要
1 北京空间机电研究所 研发中心,北京 100094
2 大连海事大学 信息科学技术学院,大连 116026
基于宏观反射式傅里叶叠层成像理论,提出一种主动相干光学合成孔径超分辨成像空间目标探测系统。采用主动相干光源配合单个小孔径相机,采集目标低分辨图像序列,通过傅里叶叠层拼接算法重构接近等效合成孔径倍率的超分辨图像。给出了系统的总体方案和详细设计,并通过搭建的宏观反射式近红外主动相干光学合成孔径超分辨成像地面实验装置验证了系统的超分辨成像能力。该系统有望通过小孔径实现等效合成孔径全天时高分辨成像效果,大幅缩减载荷口径需求。弥补传统空间目标探测系统夜间成像能力的不足,提升空间目标夜间探测能力。
空间目标探测 宏观反射式 傅里叶叠层技术 主动相干成像 光学合成孔径 超分辨成像 光学相控阵 Space object detection Macro reflection Fourier ptychographic Active coherent imaging Optical synthetic aperture Super resolution imaging Optical phased array 
光子学报
2023, 52(5): 0552219
作者单位
摘要
1 陕西科技大学 陕西人工智能联合实验室,陕西西安7002
2 西安交通大学 系统工程研究所,陕西西安710049
3 西安卫星测控中心,陕西西安71004
4 陕西科技大学 电子信息与人工智能学院,陕西西安710021
为了获取更高分辨率和清晰度的空间目标光学图像,需对地基自适应光学(Adaptive Optics,AO)成像望远镜校正后的降质图像进行超分辨率重建。针对空间目标AO图像背景单一、分辨率有限且存在运动模糊、湍流模糊以及过曝等特点,提出基于深度学习的生成对抗网络(Generative Adversarial Networks,GAN)方法来实现空间目标AO图像的超分辨率重建,构建了空间目标AO仿真图像训练集用于神经网络训练,提出了一种基于密集残差块的GAN超分辨率重建方法,通过将传统残差网络改为密集残差块,提高网络深度,将相对平均损失函数引入判别器网络,从而使得判别器更稳健,GAN训练更稳定。实验结果表明:本文提出的方法相较传统插值超分辨率方法PSNR提高11.6%以上,SSIM提高10.3%以上,相较基于深度学习的盲图像超分辨率方法PSNR平均提高6.5%,SSIM平均提高4.9%。该方法有效实现了空间目标AO图像的清晰化重建,降低了重建图像的伪影,丰富了图像细节。
空间目标图像 超分辨率 生成对抗网络 密集残差块 space object images super resolution Generative Adversarial Network(GAN) dense residual blocks 
光学 精密工程
2022, 30(17): 2155
作者单位
摘要
1 渭南师范学院 物理与电气工程学院,陕西渭南74000
2 宇航动力学国家重点实验室,西安710043
针对空间目标偏振探测识别的需求,基于三分量偏振二向反射分布函数模型对空间目标热控涂层材料的偏振特性进行了仿真,给出了被动照射条件下的反射光Stokes矢量和线偏振度,以及主动偏振探测条件下偏振二向反射分布函数矩阵元素的空间分布.搭建实验平台对两种典型空间目标热控涂层材料SR107和S781样品的偏振特性进行了测量,测量结果显示偏振二向反射分布函数模型具有较高的仿真精度,最后根据仿真和实测结果对空间目标热控涂层偏振特性规律进行了分析.本文研究对空间目标偏振探测应用具有重要的指导意义.
偏振 偏振特性 偏振二向反射分布函数 建模仿真 空间目标 热控涂层 Polarization Polarized characteristics Polarized bidirectional reflection distribution function Modeling and simulation Space object Thermal coatings 
光子学报
2020, 49(12): 205
作者单位
摘要
1 探月与航天工程中心,北京 100089
2 解放军航天工程大学,北京 101416
大量废弃的空间目标在失控状态下,由于残余角动量以及光压等摄动影响会处于翻滚状态,对其直接捕获之前进行消旋控制是较为安全的方式。介绍了国内外典型空间目标的消旋操控技术,提出了空间目标激光小光斑近距离辐照操控消旋的概念,分析了激光消旋操控的主要特点,并基于脉冲激光烧蚀冲量耦合效应,完成了典型柱状空间目标天基激光消旋操控应用分析。分析结果表明:激光操控方式可精确控制空间目标的运动姿态,有效降低翻滚空间目标的旋转角速度,所提出的天基激光操控方式可为翻滚空间目标消旋控制提供一种新的解决方法。
激光消旋 空间目标 天基激光 激光辐照 laser de-tumbling space object space-based laser laser irradiation 
红外与激光工程
2020, 49(8): 20200203
作者单位
摘要
北京控制工程研究所,北京 100190
在线捕获GEO远距离暗弱目标,实时监视轨道目标状态对于空间安全具有越来越重要的意义。在灵敏度接近14 Mv情况下,密集恒星、恒星散射光效应将极大影响目标探测。为解决上述问题,提出一种背景稠密恒星同步剔除和空间目标证认方法,利用目标短时间内规律运行的特征,实现目标的捕获、分类和在线跟踪,地面仿真和试验充分验证了方法的有效性和准确性。文中方法对于太阳系内行星、小行星探测等深空项目亦具有重要的借鉴意义。
空间目标 高灵敏度 目标探测 空间目标捕获 分类和在线跟踪 space objects high sensitivity object detection space object capturing classification and online tracking 
红外与激光工程
2020, 49(5): 20201008
孙成明 1,2,*袁艳 3吕群波 1,2
作者单位
摘要
1 中国科学院光电研究院, 北京 100094
2 中国科学院计算光学成像技术重点实验室, 北京 100094
3 北京航空航天大学精密光机电一体化技术教育部重点实验室, 北京 100191
为了提高天基空间目标光学散射特性的计算精度,提出了一种天基空间目标光学散射特性的精确建模与验证方法。综合考虑目标的背景辐射环境、表面材料属性、几何结构尺寸、运行轨道要素等因素,通过有限元分析和矢量坐标变换,利用双向反射分布函数建立了目标光学散射特性的数学模型。基于目标光学散射特性测量平台,进行了低温真空环境下目标光学散射特性数学模型的实验验证。结果表明,目标散射辐照度的理论建模结果与实验测量结果基本一致,均方误差优于9.57%。实验结果验证了建模方法的正确性。
散射 空间目标 散射特性 双向反射分布函数 
光学学报
2019, 39(11): 1129001
孙静静 1,2,**赵飞 1,*
作者单位
摘要
1 中国科学院光电研究院中国科学院计算光学成像技术重点实验室, 北京 100094
2 中国科学院大学, 北京 100049
将非负矩阵分解(NMF)算法应用到空间目标图像识别中,对两种传统NMF算法的迭代规则进行了改进,得到了稀疏NMF算法,并分别在二维(2D)和(2D) 2维度应用了这3种算法。在实验室模拟了空间光学环境,获得了多组空间目标缩比模型图像,图像预处理后建立了训练样本库和测试样本库,运用不同NMF算法对训练样本进行了特征基提取,采用最小距离分类器进行了测试样本的分类,各种NMF算法识别率均在78%以上,最高可达90%。实验结果验证了所提算法的有效性,与其他已有的目标图像识别方法相比,具有准确率较高、速度快、资源开销少的优点。
图像处理 图像识别 非负矩阵分解 空间目标图像 最小距离分类器 
激光与光电子学进展
2019, 56(10): 101007

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!