光学学报, 2020, 40 (19): 1931002, 网络出版: 2020-09-19   

蓝宝石衬底多层AlGaN薄膜透射谱研究 下载: 937次

Transmission Spectrum of Multilayer AlGaN Thin Film on Sapphire Substrate
李浩杰 1,2张燕 1,*
作者单位
1 中国科学院上海技术物理研究所红外成像材料与器件重点实验室, 上海 200083
2 中国科学院大学, 北京 100049
引用该论文

李浩杰, 张燕. 蓝宝石衬底多层AlGaN薄膜透射谱研究[J]. 光学学报, 2020, 40(19): 1931002.

Haojie Li, Yan Zhang. Transmission Spectrum of Multilayer AlGaN Thin Film on Sapphire Substrate[J]. Acta Optica Sinica, 2020, 40(19): 1931002.

参考文献

[1] Wickenden D K, Bargeron C B, Bryden W A, et al. High quality self-nucleated AlxGa1-x N layers on (00.1) sapphire by low-pressure metalorganic chemical vapor deposition[J]. Applied Physics Letters, 1994, 65(16): 2024-2026.

[2] Alaie Z, Mohammad Nejad S, Yousefi M H. Recent advances in ultraviolet photodetectors[J]. Materials Science in Semiconductor Processing, 2015, 29: 16-55.

[3] Shur M. Wide band gap semiconductor technology: state-of-the-art[J]. Solid-State Electronics, 2019, 155: 65-75.

[4] Zhao Y M, Donaldson W R. Ultrafast UV AlGaN metal-semiconductor-metal photodetector with a response time below 25 ps[J]. IEEE Journal of Quantum Electronics, 2020, 56(3): 1-7.

[5] Cai Q, Dong K X, Xie Z L, et al. Enhanced front-illuminated p-i-p-i-n GaN/AlGaN ultraviolet avalanche photodiodes[J]. Materials Science in Semiconductor Processing, 2019, 96: 24-29.

[6] Susilo N, Hagedorn S, Jaeger D, et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire[J]. Applied Physics Letters, 2018, 112(4): 041110.

[7] Cai X F, Li S P, Kang J Y. Improved characteristics of ultraviolet AlGaN multiple-quantum-well laser diodes with step-graded quantum barriers close to waveguide layers[J]. Superlattices and Microstructures, 2016, 97: 1-7.

[8] 孙京南, 孙文军, 赵立萍, 等. 影响AlGaN/GaN量子级联激光器性能的因素研究[J]. 光学学报, 2012, 32(2): 0214002.

    Sun J N, Sun W J, Zhao L P, et al. Study of the factors influencing the properties of AlGaN/GaN quantum cascade lasers[J]. Acta Optica Sinica, 2012, 32(2): 0214002.

[9] Fletcher A S A, Nirmal D. A survey of Gallium Nitride HEMT for RF and high power applications[J]. Superlattices and Microstructures, 2017, 109: 519-537.

[10] Li D B, Jiang K, Sun X J, et al. AlGaN photonics: recent advances in materials and ultraviolet devices[J]. Advances in Optics and Photonics, 2018, 10(1): 43-110.

[11] HeL, Yang DJ, Ni GQ. AlGaN epitaxial technology[M] ∥ He L, Yang D J, Ni G Q. Technology for advanced focal plane arrays of HgCdTe and AlGaN. Heidelberg: Springer, 2016: 265- 350.

[12] Laleyan D A, Liu X H, Pandey A, et al. Molecular beam epitaxy and characterization of Al0.6Ga0.4N epilayers[J]. Journal of Crystal Growth, 2019, 507: 87-92.

[13] Zhao Y M, Donaldson W R. Systematic study on aluminum composition nonuniformity in aluminum gallium nitride metal-semiconductor-metal photodetectors[J]. IEEE Transactions on Electron Devices, 2018, 65(10): 4441-4447.

[14] van Schalkwyk L, Meyer W E, Nel J M, et al. Implementation of an AlGaN-based solar-blind UV four-quadrant detector[J]. Physica B: Condensed Matter, 2014, 439: 93-96.

[15] 杨乐臣, 付凯, 史学舜, 等. 金属-半导体-金属结构AlGaN/GaN异质结紫外探测器技术及特性[J]. 光学学报, 2014, 34(s1): s104001.

    Yang L C, Fu K, Shi X S, et al. Technology and performance of metal-semiconductor-metal AlGaN/GaN heterostructure ultraviolet photodetector[J]. Acta Optica Sinica, 2014, 34(s1): s104001.

[16] Mondal R K, Chatterjee V, Pal S. Effect of step-graded superlattice electron blocking layer on performance of AlGaN based deep-UV light emitting diodes[J]. Physica E: Low-dimensional Systems and Nanostructures, 2019, 108: 233-237.

[17] Brault J, Matta S, Ngo T, et al. Internal quantum efficiencies of AlGaN quantum dots grown by molecular beam epitaxy and emitting in the UVA to UVC ranges[J]. Journal of Applied Physics, 2019, 126(20): 205701.

[18] Kalra A, Rathkanthiwar S, Muralidharan R, et al. Polarization-graded AlGaN solar-blind p-i-n detector with 92% zero-bias external quantum efficiency[J]. IEEE Photonics Technology Letters, 2019, 31(15): 1237-1240.

[19] Muth J F, Brown J D. Johnson M A L, et al. Absorption coefficient and refractive index of GaN, AlN and AlGaN alloys[J]. Mrs Internet Journal of Nitride Semiconductor Research, 1999, 4: 502-507.

[20] Laws G M, Larkins E C, Harrison I, et al. Improved refractive index formulas for the AlxGa1-xN and InyGa1-yN alloys[J]. Journal of Applied Physics, 2001, 89(2): 1108-1115.

[21] Takeuchi K, Adachi S, Ohtsuka K. Optical properties of AlxGa1-xN alloy[J]. Journal of Applied Physics, 2010, 107(2): 023306.

[22] Kucukgok B, Lu N, Ferguson I T, et al. 54(2S): 02BA05[J]. optical analyses of AlxGa1-xN thin films grown by metal organic chemical vapor deposition. Japanese Journal of Applied Physics, 2015.

[23] Liu Y, Li Q X, Wan L Y, et al. Composition and temperature dependent optical properties of AlxGa1-xN alloy by spectroscopic ellipsometry[J]. Applied Surface Science, 2017, 421: 389-396.

[24] Yu G L, Ishikawa H, Egawa T, et al. Polarized reflectance spectroscopy and spectroscopic ellipsometry determination of the optical anisotropy of gallium nitride on sapphire[J]. Japanese Journal of Applied Physics, 1997, 36(2): L1029-L1031.

[25] Urbach F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids[J]. Physical Review, 1953, 92(5): 1324.

[26] Tsai Y, Bayram C. Structural and electronic properties of hexagonal and cubic phase AlGaInN alloys investigated using first principles calculations[J]. Scientific Reports, 2019, 9(1): 6583.

[27] AdachiS. III-V ternary and quaternary compounds[M] ∥KASAP S and CAPPER P. Springer handbook of electronic and photonic materials. Cham: Springer International Publishing, 2017: 1.

[28] Zhao J G, Zhang X, Chen S, et al. Study of dual nitridation processes in growth of non-polar a-plane AlGaN epi-layers[J]. Materials Letters, 2018, 227: 108-111.

[29] Motamedi P, Cadien K. Structural and optical characterization of low-temperature ALD crystalline AlN[J]. Journal of Crystal Growth, 2015, 421: 45-52.

[30] Jacobson M A, Konstantinov O V, Nelson D K, et al. Absorption spectra of GaN: film characterization by Urbach spectral tail and the effect of electric field[J]. Journal of Crystal Growth, 2001, 230(3/4): 459-461.

[31] Xue S W, Xu J T, Li X Y. Simulation for spectral response of solar-blind AlGaN based p-i-n photodiodes[J]. Proceedings of SPIE, 2015, 9522: 95221N.

[32] Vurgaftman I, Meyer J R. Band parameters for nitrogen-containing semiconductors[J]. Journal of Applied Physics, 2003, 94(6): 3675-3696.

李浩杰, 张燕. 蓝宝石衬底多层AlGaN薄膜透射谱研究[J]. 光学学报, 2020, 40(19): 1931002. Haojie Li, Yan Zhang. Transmission Spectrum of Multilayer AlGaN Thin Film on Sapphire Substrate[J]. Acta Optica Sinica, 2020, 40(19): 1931002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!