Opto-Electronic Advances, 2019, 2 (9): 09190021, Published Online: Nov. 20, 2019   

Etching-assisted femtosecond laser modification of hard materials Download: 1452次

Author Affiliations
1 State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
2 State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
Copy Citation Text

Xue-Qing Liu, Ben-Feng Bai, Qi-Dai Chen, Hong-Bo Sun. Etching-assisted femtosecond laser modification of hard materials[J]. Opto-Electronic Advances, 2019, 2(9): 09190021.

References

[1] I S Kang, J S Kim, M C Kang, K Y Lee. Tool condition and machined surface monitoring for micro-lens array fabrication in mechanical machining. J Mater Process Tech, 2008, 201: 585-589.

[2] A Toros, M Kiss, T Graziosi, H Sattari, P Gallo, et al.. Precision micro-mechanical components in single crystal diamond by deep reactive ion etching. Microsyst Nanoeng, 2018, 4: 12.

[3] T H Chen, R Fardel, C B Arnold. Ultrafast z-scanning for high-efficiency laser micro-machining. Light Sci Appl, 2018, 7: 17181.

[4] J N Wang, Y Q Liu, Y L Zhang, J Feng, H Wang, et al.. Wearable superhydrophobic elastomer skin with switchable wettability. Adv Funct Mater, 2018, 28: 1800625.

[5] E Brasselet, M Malinauskas, A Žukauskas, S Juodkazis. Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum. Appl Phys Lett, 2010, 97: 211108.

[6] L Jiang, A D Wang, B Li, T H Cui, Y F Lu. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application. Light Sci Appl, 2018, 7: 17134.

[7] N Travitzky, A Bonet, B Dermeik, T Fey, I Filbert-Demut, et al.. Additive Manufacturing of Ceramic-Based Materials. Adv Eng Mater, 2014, 16: 729-754.

[8] Y Liao, J L Ni, L L Qiao, M Huang, Y Bellouard, et al.. High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation. Optica, 2015, 2: 329-334.

[9] Q M Zhang, H Y Yu, M Barbiero, B K Wang, M Gu. Artificial neural networks enabled by nanophotonics. Light Sci Appl, 2019, 8: 42.

[10] X Z Xie, C X Zhou, X Wei, W Hu, Q L Ren. Laser machining of transparent brittle materials: from machining strategies to applications. Opto-Electron Adv, 2019, 2: 180017.

[11] H B Jiang, Y L Zhang, Y Liu, X Y Fu, Y F Li, et al.. Bioinspired few-layer graphene prepared by chemical vapor deposition on femtosecond laser-structured Cu foil. Laser Photonics Rev, 2016, 10: 441-450.

[12] B Xu, W Q Du, J W Li, Y L Hu, L Yang, et al.. High efficiency integration of three-dimensional functional microdevices inside a microfluidic chip by using femtosecond laser multifoci parallel microfabrication. Sci Rep, 2016, 6: 19989.

[13] B Xu, W J Hu, W Q Du, Y L Hu, C C Zhang, et al.. Arch-like microsorters with multi-modal and clogging-improved filtering functions by using femtosecond laser multifocal parallel microfabrication. Opt Express, 2017, 25: 16739-16753.

[14] B Xu, Y Shi, Z X Lao, J C Ni, G Q Li, et al.. Real-time two-photon lithography in controlled flow to create a single-microparticle array and particle-cluster array for optofluidic imaging. Lab Chip, 2018, 18: 442-450.

[15] D Serien, K Sugioka. Fabrication of three-dimensional proteinaceous micro- and nano-structures by femtosecond laser cross-linking. Opto-Electron Adv, 2018, 1: 180008.

[16] T A Pham, D P Kim, T W Lim, S H Park, D Y Yang, et al.. Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists. Adv Funct Mater, 2006, 16: 1235-1241.

[17] Y Y Cao, N Takeyasu, T Tanaka, X M Duan, S Kawata. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small, 2009, 5: 1144-1148.

[18] LanBHongM HYeK DWangZ BChongT CLaser microfabrication of glass substrates by pocket scanning. In Fourth International Symposium on Laser Precision Microfabrication (SPIE2003)

[19] HongM HSugiokaKWuD JWongL LLuY Fet alLaser-induced-plasma-assisted ablation for glass microfabrication. In International Symposium on Photonics and Applications (SPIE2001)

[20] Z Q Huang, M H Hong, K S Tiaw, Q Y Lin. Quality glass processing by laser induced backside wet etching. J Laser Micro Nanoen, 2007, 2: 194-199.

[21] Y Zhou, M H Hong, J Y H Fuh, L Lu, B S Luk'yanchuk, et al.. Direct femtosecond laser nanopatterning of glass substrate by particle-assisted near-field enhancement. Appl Phys Lett, 2006, 88: 023110.

[22] M Malinauskas, A Žukauskas, S Hasegawa, Y Hayasaki, V Mizeikis, et al.. Ultrafast laser processing of materials: from science to industry. Light Sci Appl, 2016, 5: e16133.

[23] M J Smith, M Winkler, M J Sher, Y T Lin, E Mazur, et al.. The effects of a thin film dopant precursor on the structure and properties of femtosecond-laser irradiated silicon. Appl Phys A, 2011, 105: 795-800.

[24] S S Mao, F Quéré, S Guizard, X Mao, R E Russo, et al.. Dynamics of femtosecond laser interactions with dielectrics. Appl Phys A, 2004, 79: 1695-1709.

[25] M Ams, G D Marshall, P Dekker, M Dubov, V K Mezentsev, et al.. Investigation of ultrafast laser--photonic material interactions: challenges for directly written glass photonics. IEEE J Sel Top Quant Electr, 2008, 14: 1370-1381.

[26] K Sugioka, Y Cheng. Ultrafast lasers-reliable tools for advanced materials processing. Light Sci Appl, 2014, 3: e149.

[27] K M Davis, K Miura, N Sugimoto, K Hirao. Writing waveguides in glass with a femtosecond laser. Opt Lett, 1996, 21: 1729-1731.

[28] R Taylor, C Hnatovsky, E Simova. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photonics Rev, 2008, 2: 26-46.

[29] M Beresna, M Gecevičius, P G Kazansky. Ultrafast laser direct writing and nanostructuring in transparent materials. Adv Opt Photonics, 2014, 6: 293-339.

[30] J W Chan, T Huser, S Risbud, D M Krol. Structural changes in fused silica after exposure to focused femtosecond laser pulses. Opt Lett, 2001, 26: 1726-1728.

[31] C W Ponader, J F Schroeder, A M Streltsov. Origin of the refractive-index increase in laser-written waveguides in glasses. J Appl Phys, 2008, 103: 063516.

[32] A Zoubir, C Rivero, R Grodsky, K Richardson, M Richardson, et al.. Laser-induced defects in fused silica by femtosecond IR irradiation. Phys Rev B, 2006, 73: 224117.

[33] H B Sun, S Juodkazis, M Watanabe, S Matsuo, H Misawa, et al.. Generation and recombination of defects in vitreous silica induced by irradiation with a near-infrared femtosecond laser. J Phys Chem B, 2000, 104: 3450-3455.

[34] L Gui, B Xu, T C Chong. Microstructure in lithium niobate by use of focused femtosecond laser pulses. IEEE Photonic Tech Lett, 2004, 16: 1337-1339.

[35] A Rodenas, A K Kar. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing. Opt Express, 2011, 19: 17820-17833.

[36] J R Liu, Z Y Zhang, C Flueraru, X P Liu, S D Chang, et al.. Waveguide shaping and writing in fused silica using a femtosecond laser. IEEE J Sel Top Quant, 2004, 10: 169-173.

[37] A H Nejadmalayeri, P R Herman, J Burghoff, M Will, S Nolte, et al.. Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses. Opt Lett, 2005, 30: 964-966.

[38] T Calmano, J Siebenmorgen, O Hellmig, K Petermann, G Huber. Nd: YAG waveguide laser with 1.3 W output power, fabricated by direct femtosecond laser writing. Appl Phys B, 2010, 100: 131-135.

[39] Q K Li, Y M Lu, J G Hua, Y H Yu, L Wang, et al.. Multilevel phase-type diffractive lens embedded in sapphire. Opt Lett, 2017, 42: 3832-3835.

[40] Z N Tian, J G Hua, F Yu, Y H Yu, H Liu, et al.. Aplanatic zone plate embedded in sapphire. IEEE Photonic Tech Lett, 2018, 30: 509-512.

[41] V R Bhardwaj, E Simova, P B Corkum, D M Rayner, C Hnatovsky, et al.. Femtosecond laser-induced refractive index modification in multicomponent glasses. J Appl Phys, 2005, 97: 083102.

[42] F Flamini, L Magrini, A S Rab, N Spagnolo, V D'Ambrosio, et al.. Thermally reconfigurable quantum photonic circuits at telecom wavelength by femtosecond laser micromachining. Light Sci Appl, 2015, 4: e354.

[43] M Gu, X P Li, Y Y Cao. Optical storage arrays: a perspective for future big data storage. Light Sci Appl, 2014, 3: e177.

[44] D Z Wei, C W Wang, H J Wang, X P Hu, D Wei, et al.. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat Photonics, 2018, 12: 596-600.

[45] S K Sundaram, E Mazur. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat Mater, 2002, 1: 217-224.

[46] S Juodkazis, K Nishimura, S Tanaka, H Misawa, E G Gamaly, et al.. Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures. Phys Rev Lett, 2006, 96: 166101.

[47] E G Gamaly, S Juodkazis, K Nishimura, H Misawa, B Luther-Davies, et al.. Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation. Phys Rev B, 2006, 73: 214101.

[48] M Wuttig, N Yamada. Phase-change materials for rewriteable data storage. Nat Mater, 2007, 6: 824-832.

[49] C Lian, S B Zhang, S Meng. Ab initio evidence for nonthermal characteristics in ultrafast laser melting. Phys Rev B, 2016, 94: 184310.

[50] J Hegedüs, S R Elliott. Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials. Nat Mater, 2008, 7: 399-405.

[51] J Bonse, S Baudach, J Krüger, W Kautek, M Lenzner. Femtosecond laser ablation of silicon-modification thresholds and morphology. Appl Phys A, 2014, 74: 19-25.

[52] M F Becker, A B Buckman, R M Walser, T Lépine, P Georges, et al.. Femtosecond laser excitation of the semiconductor-metal phase transition in VO2. Appl Phys Lett, 1994, 65: 1507-1509.

[53] H L Ma, J Y Yang, Y Dai, Y B Zhang, B Lu, et al.. Raman study of phase transformation of TiO2 rutile single crystal irradiated by infrared femtosecond laser. Appl Surf Sci, 2007, 253: 7497-7500.

[54] A Vailionis, E G Gamaly, V Mizeikis, W G Yang, A V Rode, et al.. Evidence of superdense aluminium synthesized by ultrafast microexplosion. Nat Commun, 2011, 2: 445.

[55] N K Chen, D Han, X B Li, F Liu, J Bang, et al.. Giant lattice expansion by quantum stress and universal atomic forces in semiconductors under instant ultrafast laser excitation. Phys Chem Chem Phys, 2017, 19: 24735-24741.

[56] Y Lin, M H Hong, T C Chong, C S Lim, G X Chen, et al.. Ultrafast-laser-induced parallel phase-change nanolithography. Appl Phys Lett, 2006, 89: 041108.

[57] S Juodkazis, K Nishimura, H Misawa, T Ebisui, R Waki, et al.. Control over the crystalline state of sapphire. Adv Mater, 2006, 18: 1361-1364.

[58] A Miotello, M Bonelli, G De Marchi, G Mattei, P Mazzoldi, et al.. Formation of silver nanoclusters by excimer-laser interaction in silver-exchanged soda-lime glass. Appl Phys Lett, 2001, 79: 2456.

[59] X Q Liu, Q D Chen, R Wang, L Wang, X L Yu, et al.. Simultaneous femtosecond laser doping and surface texturing for implanting applications. Adv Mater Interfaces, 2015, 2: 1500058.

[60] H El Hamzaoui, R Bernard, A Chahadih, F Chassagneux, L Bois, et al.. Room temperature direct space-selective growth of gold nanoparticles inside a silica matrix based on a femtosecond laser irradiation. Mater Lett, 2010, 64: 1279-1282.

[61] N Marquestaut, Y Petit, A Royon, P Mounaix, T Cardinal, et al.. Three-dimensional silver nanoparticle formation using femtosecond laser irradiation in phosphate glasses: analogy with photography. Adv Funct Mater, 2014, 24: 5824-5832.

[62] C Li, X Shi, J H Si, F Chen, T Chen, et al.. Photoinduced multiple microchannels inside silicon produced by a femtosecond laser. Appl Phys B, 2010, 98: 377-381.

[63] X Q Liu, L Yu, Z C Ma, Q D Chen. Silicon three-dimensional structures fabricated by femtosecond laser modification with dry etching. Appl Opt, 2017, 56: 2157-2161.

[64] Y C Ma, L Wang, K M Guan, T Jiang, X W Cao, et al.. Silicon-based suspended structure fabricated by femtosecond laser direct writing and wet etching. IEEE Photonic Tech Lett, 2016, 28: 1605-1608.

[65] T F Deutsch, J C C Fan, D J Ehrlich, G W Turner, R L Chapman, et al.. Efficient GaAs solar cells formed by UV laser chemical doping. Appl Phys Lett, 1982, 40: 722-724.

[66] M A Sheehy, B R Tull, C M Friend, E Mazur. Chalcogen doping of silicon via intense femtosecond-laser irradiation. Mater Sci Eng B, 2007, 137: 289-294.

[67] M J Smith, M J Sher, B Franta, Y T Lin, E Mazur, et al.. Improving dopant incorporation during femtosecond-laser doping of Si with a Se thin-film dopant precursor. Appl Phys A, 2014, 114: 1009-1016.

[68] P Paiè, F Bragheri, R M Vazquez, R Osellame. Straightforward 3D hydrodynamic focusing in femtosecond laser fabricated microfluidic channels. Lab Chip, 2014, 14: 1826-1833.

[69] D Wu, J Xu, L G Niu, S Z Wu, K Midorikawa, et al.. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light Sci Appl, 2015, 4: e228.

[70] A Marcinkevičius, S Juodkazis, M Watanabe, M Miwa, S Matsuo, et al.. Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett, 2001, 26: 277-279.

[71] J Gottmann, M Hermans, N Repiev, J Ortmann. Selective laser-induced etching of 3D precision quartz glass components for microfluidic applications-up-scaling of complexity and speed. Micromachines, 2017, 8: 110.

[72] X W Cao, Q D Chen, H Fan, L Zhang, S Juodkazis, et al.. Liquid-assisted femtosecond laser precision-machining of silica. Nanomaterials, 2018, 8: 287.

[73] S Kiyama, S Matsuo, S Hashimoto, Y Morihira. Examination of etching agent and etching mechanism on femotosecond laser microfabrication of channels inside vitreous silica substrates. J Phys Chem C, 2009, 113: 11560-11566.

[74] Z Wang, L Jiang, X W Li, A D Wang, Z L Yao, et al.. High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching. Opt Lett, 2018, 43: 98-101.

[75] S Juodkazis, Y Nishi, H Misawa. Femtosecond laser-assisted formation of channels in sapphire using KOH solution. Phys Status Solidi Rapid Res Lett, 2008, 2: 275-277.

[76] T Hongo, K Sugioka, H Niino, Y Cheng, M Masuda, et al.. Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser. J Appl Phys, 2005, 97: 063517.

[77] M Masuda, K Sugioka, Y Cheng, N Aoki, M Kawachi, et al.. 3-D microstructuring inside photosensitive glass by femtosecond laser excitation. Appl Phys A, 2003, 76: 857-860.

[78] K Sugioka, Y Cheng. Integrated microchips for biological analysis fabricated by femtosecond laser direct writing. MRS Bull, 2011, 36: 1020-1027.

[79] Y Cheng, K Sugioka, K Midorikawa. Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for Lab-on-a-chip applications. Appl Surf Sci, 2005, 248: 172-176.

[80] Y L Hu, S L Rao, S Z Wu, P F Wei, W X Qiu, et al.. All-Glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching. Adv Opt Mater, 2018, 6: 1701299.

[81] C W Wang, L Yang, C C Zhang, S L Rao, Y L Wang, et al.. Multilayered skyscraper microchips fabricated by hybrid "all-in-one" femtosecond laser processing. Microsyst Nanoeng, 2019, 5: 17.

[82] C Hnatovsky, R S Taylor, E Simova, P P Rajeev, D M Rayner, et al.. Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching. Appl Phys A, 2006, 84: 47-61.

[83] Y Bellouard, A Said, M Dugan, P Bado. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt Express, 2004, 12: 2120-2129.

[84] D Wortmann, J Gottmann, N Brandt, H Horn-Solle. Micro- and nanostructures inside sapphire by fs-laser irradiation and selective etching. Opt Express, 2008, 16: 1517-1522.

[85] M Mazilu, S Juodkazis, T Ebisui, S Matsuo, H Misawa. Structural characterization of shock-affected sapphire. Appl Phys A, 2007, 86: 197-200.

[86] D Choudhury, A Rodenas, L Paterson, F Díaz, D Jaque, et al.. Three-dimensional microstructuring of yttrium aluminum garnet crystals for laser active optofluidic applications. Appl Phys Lett, 2013, 103: 041101.

[87] L Bressel, D De Ligny, C Sonneville, V Martinez, V Mizeikis, et al.. Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect[Invited]. Opt Mater Express, 2011, 1: 605-613.

[88] S Juodkazis, K Yamasaki, V Mizeikis, S Matsuo, H Misawa. Formation of embedded patterns in glasses using femtosecond irradiation. Appl Phys A, 2004, 79: 1549-1553.

[89] A Ródenas, M Gu, G Corrielli, P Paiè, S John, et al.. Three-dimensional femtosecond laser nanolithography of crystals. Nat Photonics, 2019, 13: 105-109.

[90] O Tokel, A Turnali, G Makey, P Elahi, T Colakoglu, et al.. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Nat Photonics, 2017, 11: 639-645.

[91] X W Li, Q Xie, L Jiang, W N Han, Q S Wang, et al.. Controllable Si (100) micro/nanostructures by chemical-etching-assisted femtosecond laser single-pulse irradiation. Appl Phys Lett, 2017, 110: 181907.

[92] C Shan, F Chen, Q Yang, Y Y Li, H Bian, et al.. High-level integration of three-dimensional microcoils array in fused silica. Opt Lett, 2015, 40: 4050-4053.

[93] H Bian, C Shan, K Y Liu, F Chen, Q Yang, et al.. A miniaturized Rogowski current transducer with wide bandwidth and fast response. J Micromech Microeng, 2016, 26: 115015.

[94] H Bian, H W Liu, F Chen, Q Yang, P B Qu, et al.. Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces. Opt Express, 2012, 20: 12939-12948.

[95] Z F Deng, F Chen, Q Yang, H Bian, G Q Du, et al.. Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging. Adv Funct Mater, 2016, 26: 1995-2001.

[96] F Sima, K Sugioka, R M Vázquez, R Osellame, L Kelemen, et al.. Three-dimensional femtosecond laser processing for lab-on-a-chip applications. Nanophotonics, 2018, 7: 97.

[97] X Q Liu, Q D Chen, K M Guan, Z C Ma, Y H Yu, et al.. Dry-etching-assisted femtosecond laser machining. Laser Photonics Rev, 2017, 11: 1600115.

[98] Y P Hsu, S J Chang, Y K Su, J K Sheu, C H Kuo, et al.. ICP etching of sapphire substrates. Opt Mater, 2005, 27: 1171-1174.

[99] X W Cao, Y M Lu, H Fan, H Xia, L Zhang, et al.. Wet-etching-assisted femtosecond laser holographic processing of a sapphire concave microlens array. Appl Opt, 2018, 57: 9604-9608.

[100] X Q Liu, S N Yang, L Yu, Q D Chen, Y L Zhang, et al.. Rapid engraving of artificial compound eyes from curved sapphire substrate. Adv Funct Mater, 2019, 29: 1900037.

[101] X Q Liu, L Yu, S N Yang, Q D Chen, L Wang, et al.. Optical nanofabrication of concave microlens arrays. Laser Photonics Rev, 2019, 13: 1800272.

[102] S Gomez, Belen R Jun, M Kiehlbauch, E S Aydil. Etching of high aspect ratio structures in Si using SF6/O2 plasma. J Vac Sci Technol A, 2004, 22: 606-615.

[103] L Lallement, C Gosse, C Cardinaud, M C Peignon-Fernandez, A Rhallabi. Etching studies of silica glasses in SF6/Ar inductively coupled plasmas: Implications for microfluidic devices fabrication. J Vac Sci Technol A, 2010, 28: 277-286.

[104] X Q Liu, L Yu, Q D Chen, H B Sun. Mask-free construction of three-dimensional silicon structures by dry etching assisted gray-scale femtosecond laser direct writing. Appl Phys Lett, 2017, 110: 091602.

[105] T W Lim, Y Son, Y J Jeong, D Y Yang, H J Kong, et al.. Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length. Lab Chip, 2011, 11: 100-103.

[106] T Gissibl, S Thiele, A Herkommer, H Giessen. Two-photon direct laser writing of ultracompact multi-lens objectives. Nat Photonics, 2016, 10: 554-560.

[107] X Q Liu, S N Yang, Y L Sun, L Yu, B F Bai, et al.. Ultra-smooth micro-optical components of various geometries. Opt Lett, 2019, 44: 2454-2457.

[108] L Vogelaar, W Nijdam, H A G M Van Wolferen, R M De Ridder, F B Segerink, et al.. Large area photonic crystal slabs for visible light with waveguiding defect structures: fabrication with focused ion beam assisted laser interference lithography. Adv Mater, 2001, 13: 1551-1554.

[109] C H Liu, M H Hong, H W Cheung, F Zhang, Z Q Huang, et al.. Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance. Opt Express, 2008, 16: 10701-10709.

[110] D Yang, L Liu, Q H Gong, Y Li. Rapid two-photon polymerization of an arbitrary 3D microstructure with 3D focal field engineering. Macromol Rapid Commun, 2019, 40: 1900041.

[111] J C Ni, C W Wang, C C Zhang, Y L Hu, L Yang, et al.. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci Appl, 2017, 6: e17011.

[112] F He, H Xu, Y Cheng, J L Ni, H Xiong, et al.. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt Lett, 2010, 35: 1106-1108.

[113] J T Lin, Y X Xu, J X Song, B Zeng, F He, et al.. Low-threshold whispering-gallery-mode microlasers fabricated in a Nd: glass substrate by three-dimensional femtosecond laser micromachining. Opt Lett, 2013, 38: 1458-1460.

[114] R Kammel, R Ackermann, J Thomas, J Götte, S Skupin, et al.. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing. Light Sci Appl, 2014, 3: e169.

Xue-Qing Liu, Ben-Feng Bai, Qi-Dai Chen, Hong-Bo Sun. Etching-assisted femtosecond laser modification of hard materials[J]. Opto-Electronic Advances, 2019, 2(9): 09190021.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!