人工晶体学报, 2020, 49 (10): 1819, 网络出版: 2021-01-09  

Al液滴在GaAs表面的熟化行为研究

Ripening Behavior of Al Droplet on GaAs Surface
李耳士 1,2,3,*黄延彬 1,2,3郭祥 1,2,3王一 1,2,3罗子江 2,3,4李志宏 1,2,3蒋冲 1,2,3丁召 1,2,3
作者单位
1 贵州大学大数据与信息工程学院,贵阳 550025
2 半导体功率器件可靠性教育部工程研究中心,贵阳 550025
3 贵州省微纳电子与软件技术重点实验室,贵阳 550025
4 贵州财经大学信息学院,贵阳 550025
摘要
为探究Al液滴在GaAs表面的熟化行为,利用液滴外延法在GaAs衬底表面制备Al液滴。在零As压环境下,通过控制退火时间有效控制Al液滴的生长、成核。结合热力学原理和晶体生长理论对样品形貌变化现象进行物理解释,构建出液滴形貌变化过程中熟化、刻蚀和扩散行为的基本模型。理论计算表明,液滴在熟化行为达到退火239 s的平衡点后,被向下刻蚀和向外扩散两个行为同时消耗。
Abstract
To investigate the ripening behavior of Al droplets on GaAs surface, Al droplets were prepared onto GaAs substrates by droplet epitaxy. The growth and nucleation of Al droplets were effectively controlled by controlling the annealing time without arsenic pressure. By combining thermodynamic principles and crystal growth theories, physical explanation of the different sample morphology and constructed the basic models about ripening, etching and diffusion behaviors during the process of droplets morphology transition were carried out. The calculation results confirm that the droplet will be consumed by etching and diffusion process simultaneously when the ripening behavior reaches the equilibrium state after annealing of 239 s.
参考文献

[1] Martin A J, Saucer T W, Sun K, et al. Analysis of defect-free GaSb/GaAs(001) quantum dots grown on the Sb-terminated (2×8) surface[J]. Journal of Vacuum Science & Technology B, 2012, 30: 02B112.

[2] Mano T, Watanabe K, Tsukamoto S, et al. New self-organized growth method for InGaAs quantum dots on GaAs(001) using droplet epitaxy[J]. Japanese Journal of Applied Physics, 1999, 38(9): 1009-1011.

[3] Lee J M, Kim D H, Hong H, et al. Growth of InAs nanocrystals on GaAs(100) by droplet epitaxy[J]. Journal of Crystal Growth, 2000, 212: 67-73.

[4] Mano T, Mitsuishi K, Nakayama Y, et al. Structural properties of GaAs nanostructures formed by a supply of intense As4 flux in droplet epitaxy[J]. Applied Surface Science, 2008, 254: 7770-7773.

[5] Nemcsics , Tóth L, Dobos L, et al. Composition of the ‘GaAs’ quantum dot, grown by droplet epitaxy[J]. Superlattices and Microstructures, 2010, 48: 351-357.

[6] Mano T, Koguchi N. Nanometer-scale GaAs ring structure grown by droplet epitaxy[J]. Journal of Crystal Growth, 2005, 278: 108-112.

[7] Kuroda T, Mano T, Ochiai T, et al. Optical transitions in quantum ring complexes[J].Physical Review B, 2005, 72: 205301.

[8] Nemcsics , Heyn C, Stemmann A, et al. The RHEED tracking of the droplet epitaxial grown quantum dot and ring structures[J]. Materials Science and Engineering B, 2009, 165: 118-121.

[9] Sanguinetti S, Abbarchi M, Vinattieri A, et al. Carrier dynamics in individual concentric quantum rings: photoluminescence measurements[J]. Physical Review B, 2008, 77: 125404.

[10] Kuroda T, Mano T, Ochiai T, et al. Excitonic transitions in semiconductor concentric quantum double rings[J]. Physica E, 2006, 32: 46-48.

[11] Heyn C, Stemmann A, Hansen W. Nanohole formation on AlGaAs surfaces by local droplet etching with gallium[J]. Journal of Crystal Growth, 2009, 311: 1839-1842.

[12] Heyn C. Kinetic model of local droplet etching[J].Physical Review B, 2011, 83: 165302.

[13] Wang Z M, Liang B L, Sablon K A, et al. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100)[J].Applied Physics Letters,2007,90:113120.

[14] 王 一,杨 晨,郭 祥,等.Al0.17Ga0.83As/GaAs(001)薄膜退火过程的热力学分析[J].物理学报,2018,67(8):080503.

[15] Akhundov I O, Abblperovich V L, Latyshev A V, et al. Kinetics of atomic smoothing GaAs(001) surface in equilibrium conditions[J]. Appl Surf Sci, 2013, 269: 2-6.

[16] Li X L, Wu J, Wang Z M, et al. Origin of nanohole formation by etching based on droplet epitaxy[J].Nanoscale, 2014, 6(5): 2675-2681.

[17] Li A Z H, Wang Z M, Wu J, et al. Holed nanostructures formed by Aluminum droplets on a GaAs substrate[J].Nano Research, 2010, 3: 490-495.

[18] Suzuki T, Nishinaga T. Real time observation and formation mechanism of Ga droplet during molecular beam epitaxy under excess Ga flux[J].Journal of Crystal Growth,1994, 142: 61-67.

[19] Venables J A, Spiller G D T, Hanbucken M. Nucleation and growth of thin films[J].Reports on Progress in Physics, 1984, 47: 399-459.

[20] Shitara T, Neave J H, Joyce B A. Reflection highenergy electron diffraction intensity oscillations and anisotropy on vicinal AlAs(001) during molecularbeam epitaxy[J]. Applied Physics Letters, 1993, 62: 1658-1660.

[21] Kley A, Ruggerone P, Scheffler M. Novel diffusion mechanism on the GaAs(001) surface: the role of adatom-dimer Interaction[J].Physics Review Letters, 1997, 79(26): 5278-5280.

[22] Heyn C, Stemmann A, Kppen T, et al. Highly uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes[J].Applied Physics Letters, 2009, 94: 183113.

李耳士, 黄延彬, 郭祥, 王一, 罗子江, 李志宏, 蒋冲, 丁召. Al液滴在GaAs表面的熟化行为研究[J]. 人工晶体学报, 2020, 49(10): 1819. LI Ershi, HUANG Yanbin, GUO Xiang, WANG Yi, LUO Zijiang, LI Zhihong, JIANG Chong, DING Zhao. Ripening Behavior of Al Droplet on GaAs Surface[J]. Journal of Synthetic Crystals, 2020, 49(10): 1819.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!