王一 1,2,*李志宏 1,2丁召 1,2,3杨晨 1,3[ ... ]郭祥 1,2,3
作者单位
摘要
1 贵州大学大数据与信息工程学院, 贵阳 550025
2 教育部半导体功率器件可靠性工程中心,贵阳 550025
3 贵州省微纳电子与软件技术重点实验室, 贵阳 550025
4 贵州财经大学信息学院, 贵阳 550025
采用液滴外延法在GaAs(001)衬底上同时沉积In、Al液滴形成纳米结构, 利用原子力显微镜(AFM)对实验样品进行形貌表征, 并通过X射线光电子能谱(XPS)与扫描电子显微镜分析In、Al组分比样品表面元素分布。实验结果显示, 混合沉积后的表面InAlAs纳米结构密度随着In组分的降低而降低, 而单个纳米结构的尺寸变大。SEM与XPS测试结果证明表面的In并没有因为衬底温度过高而全部偏析。根据实验结果推测, In&Al液滴同时沉积到表面形成InAl混合液滴。当液滴完全晶化后纳米结构中心出现孔洞, 而产生这一现象的主要原因是液滴向下刻蚀。
In&Al混合液滴 液滴外延 表面扩散 分子束外延 纳米结构 indium & aluminum droplet GaAs GaAs droplet epitaxy surface diffusion MBE nanostructure 
人工晶体学报
2021, 50(12): 2225
黄泽琛 1,2,3,*蒋冲 1,2,3李耳士 1,2,3李家伟 1,2,3[ ... ]丁召 1,2,3
作者单位
摘要
1 贵州大学大数据与信息工程学院,贵阳 550025
2 贵州大学微纳电子与软件技术重点实验室,贵阳 550025
3 半导体功率器件可靠性教育部工程研究中心,贵阳 550025
4 贵州财经大学信息学院,贵阳 550025
采用液滴外延法在GaAs(001)衬底上生长In液滴,利用原子力显微镜(AFM)对不同衬底温度下生长的样品进行表征,观察其表面形貌。研究表明In液滴的生长对衬底温度十分敏感,随着衬底温度的升高,液滴密度逐渐减小,液滴尺寸逐渐增大。分析了In液滴在不同衬底温度形成过程的物理机制,解释了该实验现象的原因。根据成核理论中最大团簇密度与衬底温度之间的关系,拟合计算出In液滴密度与衬底温度满足的函数关系为nx=5.17 exp(0.69 eV/kT)。
In液滴 液滴外延 衬底温度 团簇密度 GaAs GaAs indium droplet droplet epitaxy substrate temperature cluster density 
人工晶体学报
2021, 50(8): 1431
李耳士 1,2,3,*黄延彬 1,2,3郭祥 1,2,3王一 1,2,3[ ... ]丁召 1,2,3
作者单位
摘要
1 贵州大学大数据与信息工程学院,贵阳 550025
2 半导体功率器件可靠性教育部工程研究中心,贵阳 550025
3 贵州省微纳电子与软件技术重点实验室,贵阳 550025
4 贵州财经大学信息学院,贵阳 550025
为探究Al液滴在GaAs表面的熟化行为,利用液滴外延法在GaAs衬底表面制备Al液滴。在零As压环境下,通过控制退火时间有效控制Al液滴的生长、成核。结合热力学原理和晶体生长理论对样品形貌变化现象进行物理解释,构建出液滴形貌变化过程中熟化、刻蚀和扩散行为的基本模型。理论计算表明,液滴在熟化行为达到退火239 s的平衡点后,被向下刻蚀和向外扩散两个行为同时消耗。
铝液滴 熟化 形貌 液滴外延 aluminum droplet ripening morphology droplet epitaxy 
人工晶体学报
2020, 49(10): 1819
作者单位
摘要
电子科技大学微电子与固体电子学院, 四川 成都 610054
分子束液滴外延生长三维纳米结构不仅适用于晶格失配,也适用于晶格匹配材料系统。在高温条件时,这种技术制备的结构具有相对高的光学和电学性能,也表现出丰富多彩的形貌特征,包括量子环、量子点分子和纳米孔等。将着重介绍高温液滴外延生长技术的最新进展,同时讨论这种技术应用在光电材料领域的前景和挑战。
光电材料 半导体材料 分子束外延技术 高温液滴外延生长技术 optoelectronic materials semiconductor materials molecular beam epitaxy high temperature droplet epitaxy growth 
光学与光电技术
2012, 10(6): 1

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!