红外与毫米波学报, 2019, 38 (4): 04459, 网络出版: 2019-10-14  

基于金属-半导体-金属结构的Bi2Te3室温高响应率太赫兹探测器

High responsivity Bi2Te3-based room temperature terahertz detector based on metal-semiconductor-metal structure
作者单位
1 东华大学 理学院 应用物理系,上海 201620
2 中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083
3 上海智能电子与系统研究所,上海 201620
4 中国科学院大学,北京 100049
摘要
基于二维拓扑绝缘体Bi2Te3材料利用微纳工艺制备了金属-拓扑绝缘体-金属(MTM)结构的太赫兹光电探测器.器件在0.022 THz的响应率可达2×103 A/W,噪声等效功率(NEP)低于7.5×10-15 W/Hz1/2,探测率D*高于1.62 ×1011 cm·Hz1/2/W;在0.166 THz的响应率可达281.6 A/W,NEP低于5.18×10-14 W/Hz1/2,D*高于2.2×1010 cm·Hz1/2/W;在0.332 THz的响应率可达7.74 A/W,NEP低于1.75×10-12 W/Hz1/2,D*高于6.7 ×108 cm·Hz1/2/W;同时器件在太赫兹波段具有小的时间常数(7~8 μs).该项工作突破了传统光子探测的带间跃迁,实现了可室温工作、高响应率、高速响应以及高灵敏度的太赫兹探测器件.
Abstract
In this study, a metal-topological insulator-metal (MTM) structure terahertz photodetector was fabricated based on a two-dimensional topological insulator Bi2Te3 material using a micro-nano process. The responsivity of device reaches 2×103 A/W at 0.02 THz, the noise equivalent power (NEP) is lower than 7.5×10-15 W/Hz1/2, and the detectivity D* is higher than 1.62×1011 cm·Hz1/2 /W. The responsivity is up to 281.6 A/W at 0.166 THz, NEP is lower than 5.18×10-14 W/Hz1/2, D* is higher than 2.2×1010 cm·Hz1/2/W. The responsivity is up to 7.74 A/W at 0.332 THz, NEP is lower than1.75×10-12 W/Hz1/2, D* is higher than 6.7×108 cm·Hz1/2/W. At the same time, the response time of device is 7~8 μs in the terahertz band. This work breaks through the inter-band transition of traditional photon detection, and realizes terahertz detectors with room temperature operation, high response rate, high speed response and high sensitivity.
参考文献

[1] Konig M, Wiedmann S, Brune C, et al. Quantum spin hall insulator state in HgTe quantum wells[J]. Science, 2007, 318(5851):766-770.

[2] Zhang X, Wang J, Zhang S C . Topological insulators for high performance terahertz to infrared applications[J]. Physical Review B Condensed Matter, 2011, 82(82):4196-4205.

[3] Yuan H, Liu H, Shimotani H, et al. Liquid-gated ambipolar transport in ultrathin films of a topological insulator Bi2Te3[J]. Nano Letters, 2011, 11(7):2601-5.

[4] Yan Y, Liao Z M, Ke X, et al. Topological surface state enhanced photothermoelectric effect in Bi2Se3 nanoribbons[J]. Nano letters, 2014, 14(8): 4389-4394.

[5] Mciver J W, Hsieh D, Steinberg H, et al. Control over topological insulator photocurrents with light polarization.[J]. Nature Nanotechnology, 2011, 7(2):96-100.

[6] Chattopadhyay G . Submillimeter-Wave coherent and incoherent sensors for space applications[J]. Lecture Notes Electrical Engineering, 2008, 21:387-414.

[7] Sizov F, Rogalski A. THz detectors[J]. Progress in Quantum Electronics, 2010, 34(5):278-347.

[8] Rostami A, Rasooli H, Baghban H . Terahertz and infrared quantum photodetectors[M]. Terahertz Technology. Springer Berlin Heidelberg, 2011.

[9] Huang Z, Zhou W, Tong J, et al. Terahertz detection: Extreme sensitivity of room-temperature photoelectric effect for terahertz detection (Adv. Mater. 1/2016)[J]. Advanced Materials, 2016, 28(1):111.

[10] Huo C, Yan Z, Song X, et al. 2D materials via liquid exfoliation: a review on fabrication and applications[J]. Science Bulletin, 2015, 60(23):1994-2008.

[11] Das J K, Nahid M A I. Electrical properties of thermal evaporated bismuth telluride thin films[J]. International Journal of Thin Films Science and Technology, 2015, 4(1):13.

[12] Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature materials, 2012, 11(10):865.

[13] Sizov F, Zabudsky V, Golenkov A, et al. Mm-wave hybrid narrow-gap hot-carrier and Schottky diodes detector arrays[C]. In Proceedings of SPIE -The International Society for Optical Engineering, 2012, 8550:855027.

[14] Han R, Zhang Y, Kim Y, et al. Active terahertz imaging using Schottky diodes in CMOS: array and 860-GHz pixel[J]. IEEE Journal of Solid-State Circuits, 2013, 48(10):2296-2308.

[15] Zak A, Andersson M A, Bauer M, et al. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene[J]. Nano Letters, 2014, 14(10):5834-5838.

徐新月, 张晓东, 吴敬, 江林, 吴彩阳, 姚娘娟, 曲越, 周炜, 尹一鸣, 黄志明. 基于金属-半导体-金属结构的Bi2Te3室温高响应率太赫兹探测器[J]. 红外与毫米波学报, 2019, 38(4): 04459. XU Xin-Yue, ZHANG Xiao-Dong, WU Jing, JIANG Lin, WU Cai-Yang, YAO Niang-juan, QU Yue, ZHOU Wei, YIN Yi-Ming, HUANG Zhi-Ming. High responsivity Bi2Te3-based room temperature terahertz detector based on metal-semiconductor-metal structure[J]. Journal of Infrared and Millimeter Waves, 2019, 38(4): 04459.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!