强激光与粒子束, 2013, 25 (11): 2836, 网络出版: 2013-11-14   

杂质诱导熔石英激光的损伤机理

Mechanism of laser damage induced by inclusions in fused silica
作者单位
四川大学 电子信息学院, 成都 610064
摘要
发展了355 nm纳秒激光下亚波长杂质粒子引起熔石英损伤的基本模型。通过Mie散射理论和热传导方程,计算了粒子与熔石英边界处的温度随粒子尺寸的变化关系,并分析了达到临界温度时,不同粒子诱导损伤所需的关键能量密度,讨论了各粒子最易引起熔石英损伤的尺寸。实验采用355 nm纳秒激光脉冲作用熔石英及其HF刻蚀样品,测得两者的损伤概率。研究表明:粒子吸收激光能量,随着粒子半径的增加,其边缘温度先增大后减小,一定尺寸范围内的粒子才会引起熔石英的损伤;关键能量密度所对应的粒子半径为最易引起熔石英损伤的关键粒子半径;经刻蚀后,熔石英样品表面杂质数密度降低,损伤概率降低,损伤阈值提高。
Abstract
A model was developed for the description of inclusion-induced damage in fused silica by nanosecond-pulse laser at 355 nm. We calculated the temperature of impurity particles with their sizes increasing, and obtained the correlation between the critical fluence and particle radius through Mie theory and heat equation. Moreover, the size at which fused silica damage could be induced easily was discussed for each particle. We got the curves of laser damage probability for samples from the results of damage tests at last. Both the calculation and the experiment show that, by absorbing the energy of laser, with the particle radius increasing, the temperature in particle edge increases first and then decreases. Hence, only a certain range of particles can initiate damage of fused silica. The particles whose radius corresponds to critical fluence most likely cause breakdown of fused silica. The probability of damage on the fused silica sample etched decreases as its impurity density at surface decreases, thus improving the damage threshold of the fused silica.
参考文献

[1] 花金荣,李莉,向霞,等.熔石英亚表面杂质颗粒附近光场调制的三维模拟[J].物理学报, 2011, 60:044206.(Hua Jinrong, Li Li, Xiang Xia, et al. Three-dimensional numerical simulation of light field modulation in the vicinity of inclusions in silica subsurface. Acta Physica Sinica, 2011, 60:044206)

[2] Hopper R W, Uhlmann D R. Mechanism of inclusion damage in laser glass[J]. Journal of Applied Physics, 1970, 41(10):4023-4037.

[3] Feit M D, Campbell J H, Faux D, et al. Modeling of laser-induced surface cracks in silica at 355 nm[C]//Proc of SPIE. 1998, 3244:350.

[4] Neauport J, Lamaignere L, Bercegol H. Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm[J]. Optics Express, 2005, 13(25):10163-10171.

[5] 欧阳升,刘志超,许乔.熔石英表面加工引入金属微粒的三倍频激光损伤机制[J].强激光与粒子束, 2011, 23(9):2423-2426.(Ouyang Sheng, Liu Zhichao, Xu Qiao. Mechanism of third-harmonic laser-induced damage on fused silica surface with processing-introduced metal absorbers. High Power Laser and Particle Beams, 2011, 23(9):2423-2426)

[6] Stevens-Kalceff M A, Stesmans A, Joe Wong. Defects induced in fused silica by high fluence ultraviolet laser pulses at 355 nm[J]. Applied Physics Letters, 2002, 80(5):757-760.

[7] Gao Xiang, Feng Guoying, Han Jinghua, et al. Investigation of laser-induced damage by various initiators on the subsurface of fused silica[J]. Optics Express, 2012, 20(20):22095-22101.

[8] Kozlowski M R, Carr J, Hutcheon I, et al. Depth profiling of polishing-induced contamination on fused silica surfaces[C]//Proc of SPIE. 1998, 3244:365-375.

[9] 周刚,马彬,焦宏飞,等.1064 nm高反射薄膜激光损伤阈值测量方法[J].强激光与粒子束, 2011, 23(4):963-968.(Zhou Gang, Ma Bin, Jiao Hongfei, et al. Laser damage threshold measurements of 1064 nm high reflection mirrors. High Power Laser and Particle Beams, 2011, 23(4):963-968)

[10] Bloembergen N. Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics[J]. Applied Optics, 1973, 12(4):661-664.

[11] Dyan A, Enguehard F, Lallich S, et al. Scaling laws in laser-induced potassium dihydrogen phosphate crystal damage by nanosecond pulses at 3ω[J]. Opt Soc Am B, 2008, 25(6):1087-1095.

[12] Feit M D, Rubenchik A M. Influence of subsurface cracks on laser induced surface damage[C]//Proc of SPIE. 2004, 5273:264-272.

[13] Chan C H. Effective absorption for thermal blooming due to aerosols[J]. Applied Physics Letters, 1975, 26(11):628-630.

[14] Goldenberg H, Tranter C J. Heat flow in an infinite medium heated by a sphere[J]. British Journal of Applied Physics, 1952, 3(1):296-298.

[15] 欧阳升,刘志超,许乔.三倍频熔石英激光损伤的吸收前驱体[J].应用光学, 2011, 32(6):1257-1262.(Ouyang Sheng, Liu Zhichao, Xu Qiao. Surface damage precursors in triple-frequency fused silica. Journal of Applied Optics, 2011, 32(6):1257-1262)

[16] Hulst H C. Light scattering by small particles[M]. American: Dover Publication, 1981.

[17] Gallais L, Voarino P, Amra C. Optical measurement of size and complex index of laser-damage precursors: the inverse problem[J]. Optical Society of America, 2004, 21(5):1073-1080.

[18] Burnham A K, Runkel M, Demos S G, et al. Effect of vacuum on the occurrence of UV-induced surface photoluminescence, transmission loss, and catastrophic surface damage[C]//Proc of SPIE. 2000, 4134:243-252.

翟玲玲, 冯国英, 高翔, 韩敬华. 杂质诱导熔石英激光的损伤机理[J]. 强激光与粒子束, 2013, 25(11): 2836. Zhai Lingling, Feng Guoying, Gao Xiang, Han Jinghua. Mechanism of laser damage induced by inclusions in fused silica[J]. High Power Laser and Particle Beams, 2013, 25(11): 2836.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!