中国激光, 2014, 41 (9): 0913002, 网络出版: 2014-07-22   

部分相干平顶光束在非Kolmogorov大气湍流中湍流距离的变化

Change of Turbulence Distance for Partially Coherent Flat-Topped Beams Propagating Through Non-Kolmogorov Turbulence
作者单位
1 宜宾学院物理与电子工程学院物理研究所, 四川 宜宾 644007
2 四川大学电子信息学院, 四川 成都 610064
摘要
为了说明部分相干平顶(PCFT)光束在非Kolmogorov(非K)大气湍流中湍流距离的变化,基于广义惠更斯-菲涅耳原理和利用相对M2因子定义的湍流距离,推导出部分相干平顶光束在非K大气湍流中传输的湍流距离的解析表达式。部分相干平顶光束在非K大气湍流中的湍流距离由非K大气湍流参数即广义指数参数、湍流内外尺度和部分相干平顶光束在z=0处的初始二阶矩即光束参数(包含光束阶数、波长、相干度以及束腰宽度)决定。研究结果表明,PCFT光束在非K大气湍流中的湍流距离随广义指数参数的增加先减小达到最小值后再增大,随部分相干平顶光束的阶数和波长的增加而增大,随光束相干性的减弱而增大,随光束束腰宽度的增加做先减小后增大的非单调变化。
Abstract
In order to illustrate the change of turbulence distance for partially coherent flat-topped (PCFT) beams propagating through non-Kolmogorov (non-K) turbulence, based on the extended Huygens-Fresnel principle and the definition of turbulence distance using relative M2-factor, the analytical expression for turbulence distance of PCFT beams through non-Kolmogorov turbulence is derived. The turbulence distance of PCFT beams through non-Kolmogorov turbulence depends on the generalized exponent parameter, inner scale and outer scale of turbulence and the initial second order moments at the plane of z=0 (namely, beam parameters including beam order, wavelength, coherence degree and beam waist width). The results show that the turbulence distance of PCFT beams through non-Kolmogorov turbulence firstly decreases towards a minimum and then increases with the increasing of generalized exponent parameter, increases with the increasing of beam order and wavelength and decreasing of coherence property, and does not monotonously vary that the turbulence distance firstly decreases and then increases with the increasing of beam waist width.
参考文献

[1] Wu Jian. Propagation of a Gaussian-Schell beam through turbulent media[J]. J Mod Opt, 1990, 37(4): 671-684.

[2] A Dogariu, S Amarande. Propagation of partially coherent beams turbulence-induced degradation[J]. Opt Lett, 2003, 28(1): 10-12.

[3] Yangjian Cai. Propagation of various flat-topped beams in a turbulent atmosphere[J]. J Opt A, Pure Appl Opt, 2006, 8(6): 537-545.

[4] Dan Youquan, Zhang Bin. Second moments of partially coherent beams in atmospheric turbulence[J]. Opt Lett, 2009, 34(5): 563-565.

[5] 李菲,吴毅,侯再红. 湍流大气光通信系统误码率分析与实验研究[J]. 光学学报, 2012, 32(6): 0606002.

    Li Fei, Wu Yi, Hou Zaihong. Analysis and experimental research on bit error rate for free-space optical communication systems through turbulent atmosphere[J]. Acta Optica Sinica, 2012, 32(6): 0606002.

[6] 胡昊,王红星,刘敏, 等. 基于TPC的大气无线光通信差错性能分析[J]. 激光与光电子学进展, 2011, 48(1): 010601.

    Hu Hao, Wang Hongxing, Liu Min, et al.. Analysis on error performance of free space optical communication based on Turbo poduct code[J]. Laser & Optoelectronics Progress, 2011, 48(1): 010601.

[7] 华志励,李洪平. 基于随机数据元扩张的大气湍流相位屏数值模拟[J]. 光学学报,2012, 32(5): 0501001.

    Hua Zhili, Li Hongping. Atmospheric turbulence phase screen simulation based on random unit expansion[J]. Acta Optica Sinica, 2012, 32(5): 0501001.

[8] 武云云, 李新阳,饶长辉. 大气湍流像差对空间零差二进制相移键控相干光通信误码性能的影响[J]. 光学学报,2013, 33(6): 0606002.

    Wu Yunyun, Li Xinyang, Rao Changhui. Effect of atmospheric turbulence aberration on the bit-error performance of homodyne binary phase shift keying coherent optical communication[J]. Acta Optica Sinica, 2013, 33(6): 0606002.

[9] G Gbur, E Wolf. Spreading of partially coherent beams in random media[J]. J Opt Soc Am A, 2002, 19(8): 1592-1598.

[10] X Li, X Ji, H T Eyyuboglu, et al.. Turbulence distance of radial Gaussian Schell-model array beams[J]. Appl Phys B, 2010, 98(2-3): 557-565.

[11] Dan Y, Zeng S, Hao B, et al.. Range of turbulence-independent propagation and Rayleigh range of partially coherent beams in atmospheric turbulence[J]. J Opt Soc Am A, 2010, 27(3): 426- 434.

[12] Y L Ai,Y Q Dan. Range of turbulence-negligible propagation of Gaussian Schell-model array beams[J]. Opt Commun, 2011, 284(13): 3216-3220.

[13] M S Belen′kII, S J Karis, J M Brown Ⅱ, et al.. Experimental study of the effect of non-Kolmogorov stratospheric turbulence on star image motion[C]. SPIE,1997, 3126: 113-123.

[14] I Toselli, L C Andrews, R L Phillips, et al.. Angle of arrival fluctuations for free space laser beam propagation through non Kolmogorov turbulence[C]. SPIE, 2007, 6551: 65510E.

[15] 陈斐楠,陈晶晶,赵琦. 高阶贝塞尔高斯光束在非柯尔莫哥诺夫大气中的传输特性[J]. 中国激光, 2012, 39(9): 0913001.

    Chen Feinan, Chen Jingjing, Zhao Qi. Properties of high order Bessel Gaussian beam propagation in non-Kolmogorov atmosphere turbulence[J]. Chinese J Lasers, 2012, 39(9): 0913001.

[16] Y Li. New expressions for flat-topped light beams[J]. Opt Commun, 2002, 206(4): 225-234.

[17] Y Q Dan, B Zhang, P P Pan. Propagation of partially coherent flat-topped beams through a turbulent atmosphere[J]. J Opt Soc Am A, 2008, 25(9): 2223-2231.

[18] Y Q Dan, B Zhang. Beam propagation factor of partially coherent flat-topped beams in a turbulent atmosphere[J]. Opt Express, 2008, 16(20): 15563-15575.

[19] Y P Huang, G P Zhao, D He, et al.. Spreading and M2-factor of elegant Hermit-Gaussian beams through non-Kolmogorov turbulence[J]. J Mod Opt, 2011, 58(11): 912-917.

[20] 叶顺流,王绪安,朱少岚,等. 平顶高斯光束相干合成在大气湍流中的传输[J]. 红外与激光工程, 2011, 40(7): 1347-1351.

    Ye Shunliu, Wang Xu′an, Zhu Shaolan, et al.. Propagation of coherent combination of flat-topped Gaussian beams in atmospheric turbulence[J]. Infrared and Laser Engineering, 2011, 40(7): 1347-1351.

[21] 范承玉,宋正方. 大气湍流对激光跟踪系统角精度的影响[J]. 强激光与粒子束, 1995, 7(4): 543-548.

    Fan Chengyu, Song Zhengfang. Effect of atmospheric turbulence on precision of laser tracking system[J]. High Power Laser and Particle Beams, 1995, 7(4): 543-548.

[22] 梅海平,吴晓庆,饶瑞中. 不同地区大气光学湍流内外尺度测量[J]. 强激光与粒子束, 2006,18(3): 362-366.

    Mei Haiping, Wu Xiaoqing, Rao Ruizhong. Measurement of inner and outer scale of atmospheric optical turbulence in different areas[J]. High Power Laser and Particle Beams, 2006,18(3): 362-366.

黄永平, 段志春, 贺也洹, 张彬. 部分相干平顶光束在非Kolmogorov大气湍流中湍流距离的变化[J]. 中国激光, 2014, 41(9): 0913002. Huang Yongping, Duan Zhichun, He Yehuan, Zhang Bin. Change of Turbulence Distance for Partially Coherent Flat-Topped Beams Propagating Through Non-Kolmogorov Turbulence[J]. Chinese Journal of Lasers, 2014, 41(9): 0913002.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!