光学 精密工程, 2011, 19 (3): 612, 网络出版: 2011-03-30   

微加热器热传导试验与计算

Experiment and thermal calculation of micro heater
作者单位
1 清华大学 微电子学研究所,北京 100084
2 大连理工大学 辽宁省微纳米技术及系统重点实验室,辽宁 大连 116024
摘要
为了研究微加热膜下方的结构与微加热器性能的关系,利用数值计算与有限元仿真,研究了微加热膜下方空气隙厚度的变化对加热器性能的影响。首先,通过微加热器试验确定了对流换热系数等关键热学计算参数,建立了一维Fourier导热微分方程组,计算了Biot数并以此为依据对模型进行了薄壁简化,使用有限差分法对微分方程进行了数值计算。然后,使用ANSYS有限元分析软件对模型进行了电热耦合仿真,并对在对流换热边界下硅衬底(无空气隙),100,200,300,400 μm气隙以及加热膜(完全贯通)6种模型的瞬态温度响应及稳态热分布的结果进行了对比。计算结果表明,相比硅衬底,目前的微加热膜结构在同样边界条件下可以将最高温度提高约17%。空气隙为200 μm时,在+5 V驱动电压和空气对流边界条件下,微加热器可以达到390 K,稳态功耗为134 mW,起到了改善最高温度性能,降低功耗的作用。
Abstract
By utilizing the numerical solution and Finite Element Analysis (FEA) approach, the effect of the air gap beneath a heating membrane on the performemce of a micro heater was calculated and simulated. The thermal convection coefficient was acquired from a heating experiment. Then, a 1D Fourier heat transfer equation was derived.By using the Biot number calculated and the lumped-capacity solution, the model was simplified into a multi-layer thin slab one.Furthermore,the transient temperature response and stable thermal distribution of the air gap in thickness of 0 (pure Si substrate), 100, 200, 300, 400 μm and completely through (heating membrane) were compared under the conditions of heat convection and heat transfer. Calculation results show the climax temperature has increased approximately 17% by utilizing the heating membrane structure. The results of steady state and transient thermal-electrical coupled field FEA reveal that 200 μm air gap structure indeed enhances the climax temperature to 390 K and reduces the power consumption to 134 mW, which is coherent with the numerical calculation results and experiences.
参考文献

[1] . .Microhotplates with TiN heaters[J]. Sensors and Actuators A: Physical, 2008, 148(2): 416-421.

[2] . Transient thermal bubble formation on polysilicon micro-resisters[J]. Journal of Heat Transfer, 2002, 124(22): 375-382.

[3] . Fabrication, modeling and testing of a thin Au/Ti microheater[J]. International Journal of Thermal Sciences, 2007, 46(6): 580-588.

[4] 王少飞,曹宇,王小宝,等.激光微细熔覆快速制造微加热器阵列[J].中国激光,2007,34(11):1567-1571.

    WANG S F,CAO Y,WANG X B,et al..Microheater array fabrication by laser micro-cladding method[J].Chinese Journal of Lasers, 2007,34(11):1567-1571.(in Chinese)

[5] 闫卫平, 朱剑波, 马灵芝,等.金属薄膜加热器的研究[J].传感技术学报,2004,4(17):615-619.

    YAN W P,ZHU J B,MA L ZH,et al..Research of metal membrane heater[J].Chinese Journal of Sensors and Actuators,2004,4(17):615-619.

[6] 黎仁刚,黄庆安,李伟华.热电耦合微执行器温度分布的节点分析法[J].半导体学报,2005,3(26):562-567.

    LI R G,HUANG Q A,LI W H. A nodal analysis method for temperature distribution of thermo-electrical coupled thermal microactuators[J].Chinese Journal of Semiconductors, 2005,3(26):562-567. (in Chinese)

[7] 罗伟栋.PCR扩增芯片中微加热器结构优化分析[J].传感技术学报,2005,3(18):627-631.

    LUO W D. Analysis and optimization to the structure of micro-heater in PCR Chip[J].Chinese Journal of Sensors and Actuators, 2005,3(18):627-631. (in Chinese)

[8] 吴雷, 李铁, 王立春, 等.微机械面型微加热器的热学分析[J]. 功能材料与器件学报,2005,4(11):466-475.

    WU L, LI T, WANG L CH,et al..Thermal analysis of MEMS micro-hotplate with uniform temperature in large area[J].Journal of Functional Materials and Device,2005,4(11):466-475. (in Chinese)

[9] JOHN H. LIENHARD IV. A Heat Transfer Textbook[M].Houston:Phlogiston Press,2008.

[10] 贺永,傅建中,陈子辰. 热压成型装备精密温控研究[J].光学 精密工程,2008,5(16): 845-851.

    HE Y,FU J ZH,CHEN Z CH. Temperature precise control in hot embossing device[J].Opt. Precision Eng., 2008,5(16):845-851.(in Chinese)

[11] 罗志涛,徐抒岩,陈立恒. 大功率焦平面器件的热控制[J].光学 精密工程,2008,11(16):2187-2195.

    LUO ZH T,XU SH Y,CHEN L H. Thermal control of high-power focal plane apparatus[J].Opt. Precision Eng., 2008,11(16):2187-2195.(in Chinese)

[12] 刘静. 微米/纳米尺度传热学[M].北京:科学出版社,2001.

    LIU J. Micro/nano Scale Heat Transfer[M]. Beijing: China Science Press, 2001. (in Chinese)

[13] 俞昌铭. 热传导及其数值分析[M].北京:清华大学出版社,1981.

    YU CH M. An Numerical Analysis of Heat Conduction[M]. Beijing: Tsinghua University Press,1981. (in Chinese)

刘泽文, 田昊, 刘冲. 微加热器热传导试验与计算[J]. 光学 精密工程, 2011, 19(3): 612. LIU Ze-wen, TIAN Hao, LIU Chong. Experiment and thermal calculation of micro heater[J]. Optics and Precision Engineering, 2011, 19(3): 612.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!