液晶与显示, 2018, 33 (3): 228, 网络出版: 2018-05-29  

基于GRT-CLEAN的高速旋转目标快速三维成像方法

Fast 3D imaging algorithm for high-speed spinning targets based on GRT-CLEAN
作者单位
1 西北工业大学 研究生院, 陕西 西安 710072
2 陕西法士特齿轮有限责任公司, 陕西 西安 710119
3 西北工业大学 无人机重点实验室, 陕西 西安 710065
摘要
针对传统高速旋转目标三维成像算法存在成像效果差、计算复杂度大、鲁棒性差的缺点, 本文提出一种加速的GRT-CLEAN高速自旋目标三维成像方法。采用广义Radan变换(GRT)与CLEAN技术相结合的方法进行目标三维特征提取, 实现高分辨精确目标成像; 采用“先粗网格, 后精确网格”的策略, 分两步对散射点目标进行估计, 降低计算复杂度, 计算复杂度从Ο(N×P×Q×T)降为Ο(10-4×N×P×Q×T), 大幅提高成像速度。仿真实验与数值分析验证了本文所提方法的有效性。实验结果表明, 本文所提成像在低信噪比和目标存在遮挡的情况下, 依然能对目标进行有效成像; 与传统的GRT-CLEAN成像方法相比, 本文所提成像方法大幅降低计算复杂度。
Abstract
In order to overcome the shortcomings of traditional 3D imaging algorithms for high-speed spinning targets, such as high computational complexity, poor imaging result and robustness, a fast 3D imaging algorithm based on GRT-CLEAN is developed. First, the 3D features of the target are extracted with the combination of generalized Radan transform(GRT) and CLEAN technology which could obtain a high resolution image. Then, the scattering targets are estimated with two separate grid sequentially (from coarse grid to fine grid), which could reduce the computational complexity and speed up the imaging process. The effectiveness of the current 3D imaging algorithm is verified by the simulation experiment and numerical analysis. Results show that the present 3D imaging algorithm based on GRT-CLEAN can obtain an effective image under the circumstances of low signal-to-noise ratio and no target occultation, and greatly reduce the computational complexity compared with the traditional GRE-CLEAN imaging method.
参考文献

[1] PATE-CORNELL E, SACHON M. Risks of particle hits during space walks in low Earth orbit [J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(1): 134-146.

[2] 王琦.空间目标ISAR成像的研究[D].西安: 西安电子科技大学, 2007.

    WANG Q. Study of ISAR imaging for space targets [D]. Xi’an: Xidian University, 2007. (in Chinese)

[3] 白雪茹.空天目标逆合成孔径雷达成像新方法研究[D].西安: 西安电子科技大学, 2011.

    BAI X R. Study on new techniques for ISAR imaging of aerospace targets [D]. Xi’an: Xidian University, 2011. (in Chinese)

[4] 刘宗明, 张宇, 庐山, 等.非合作旋转目标闭环检测与位姿优化[J].光学 精密工程, 2017, 25(4): 1036-1043.

    LIU Z M, ZHANG Y, LU S, et al. Closed-loop detection and pose optimization of non-cooperation rotating targets [J]. Optics and Precision Engineering, 2017, 25(4): 1036-1043. (in Chinese)

[5] BROWN W M. Synthetic aperture radar [J]. IEEE Transactions on Aerospace and Electronic Systems, 1967, AES-3(2): 217-229.

[6] WALKER J L. Range-Doppler imaging of rotating objects [J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, AES-16(1): 23-52.

[7] AUSHERMAN D A, KOZMA A, WALKER J L, et al. Developments in radar imaging [J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, AES-20(4): 363-400.

[8] PRICKETT M J, CHEN C C. Principles of inverse synthetic aperture radar/ISAR/imaging [C]//Proceedings ofEASCON'80; Electronics and Aerospace Systems Conference. Arlington, VA: IEEE, 1980: 340-345.

[9] SATO T. Shape estimation of space debris using single-range Doppler interferometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 1000-1005.

[10] 王琦, 邢孟道, 保铮.基于单距离匹配滤波的太空碎片雷达成像[J].电子与信息学报, 2008, 30(5): 1037-1040.

    WANG Q, XING M D, BAO Z. Single range matching filtering based space debris radar image [J]. Journal of Electronics & Information Technology, 2008, 30(5): 1037-1040. (in Chinese)

[11] 保铮, 王根原.具有三维转动目标的逆合成孔径雷达成像算法[J].西安电子科技大学学报, 1997, 24(S): 1-9.

    BAO Z, WANG G Y. The imaging method for the radar targets with three dimensional ratoing [J]. Journal of Xidian University, 1997, 24(S): 1-9. (in Chinese)

[12] TSAO J, STEINBERG B D. Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique [J]. IEEE Transactions on Antennas and Propagation, 1988, 36(4): 543-556.

[13] WANG Q, XING M D, LU G Y, et al. SRMF-CLEAN imaging algorithm for space debris [J]. IEEE Transactions on Antennas and Propagation, 2007, 55(12): 3524-3533.

[14] 刘亚波, 张磊, 邢孟道, 等.采用相干单距离多普勒干涉的太空碎片成像[J].西安电子科技大学学报, 2010, 37(4): 660-664, 670.

    LIU Y B, ZHANG L, XING M D, et al. Coherent single range doppler interferometry based space debris radar image [J]. Journal of Xidian University, 2010, 37(4): 660-664, 670. (in Chinese)

[15] DONOHO D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

[16] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.

[17] CANDES E J, TAO T. Near-optimal signal recovery from random projections: universal encoding strategies [J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.

[18] BAI X R, SUN G C, WU Q S, et al. Narrow-band radar imaging of spinning targets [J]. Science China Information Sciences, 2011, 54(4): 873-883.

[19] 贺柏森, 张磊, 张龙, 等.一种高速自旋目标三维成像新算法[J].西安电子科技大学学报: 自然科学版, 2009, 36(5): 825-830, 915.

    HE B S, ZHANG L, ZHANG L, et al. New algorithm for high-speed spinning target 3D ISAR imaging [J]. Journal of Xidian University, 2009, 36(5): 825-830, 915. (in Chinese)

[20] WANG Q, XING M D, LU G Y, et al. High-resolution three-dimensional radar imaging for rapidly spinning targets [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 22-30.

[21] 吴亮, 魏玺章, 黎湘, 等.基于距离-慢时间匹配滤波和复值反投影的快速旋转目标三维成像算法[J].信号处理, 2010, 26(12): 1761-1767.

    WU L, WEI X Z, LI X, et al. Range-slow-time matched-filter and complex-valued back projection-based 3-D imaging algorithm for rapidly spinning targets [J]. Signal Processing, 2010, 26(12): 1761-1767. (in Chinese)

王会, 巨欢, 方阳, 李荣旭, 王保平. 基于GRT-CLEAN的高速旋转目标快速三维成像方法[J]. 液晶与显示, 2018, 33(3): 228. WANG Hui, JU Huan, FANG Yang, LI Rong-xu, WANG Bao-ping. Fast 3D imaging algorithm for high-speed spinning targets based on GRT-CLEAN[J]. Chinese Journal of Liquid Crystals and Displays, 2018, 33(3): 228.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!