光学学报, 2020, 40 (14): 1412002, 网络出版: 2020-07-23   

一种基于偏振热像的金属疲劳损伤评估方法 下载: 1142次

Metal Fatigue Damage Assessment Based on Polarized Thermography
汪方斌 1,2,4,*孙凡 1,2朱达荣 1,2,4刘涛 1,2,4王雪 1,2王峰 3
作者单位
1 安徽建筑大学机械与电气工程学院, 安徽 合肥 230601
2 安徽建筑大学建筑机械故障诊断与预警技术重点实验室, 安徽 合肥 230601
3 偏振光成像探测技术安徽省重点实验室, 安徽 合肥 230031
4 工程机械智能制造安徽省教育厅重点实验室, 安徽 合肥 230601
引用该论文

汪方斌, 孙凡, 朱达荣, 刘涛, 王雪, 王峰. 一种基于偏振热像的金属疲劳损伤评估方法[J]. 光学学报, 2020, 40(14): 1412002.

Fangbin Wang, Fan Sun, Darong Zhu, Tao Liu, Xue Wang, Feng Wang. Metal Fatigue Damage Assessment Based on Polarized Thermography[J]. Acta Optica Sinica, 2020, 40(14): 1412002.

参考文献

[1] 周正干, 刘斯明. 铝合金初期塑性变形与疲劳损伤的非线性超声无损评价方法[J]. 机械工程学报, 2011, 47(8): 41-46, 53.

    Zhou Z G, Liu S M. Nondestructive evaluation of early stage plasticity and fatigue damage of aluminum alloy using nonlinear ultrasonic method[J]. Journal of Mechanical Engineering, 2011, 47(8): 41-46, 53.

[2] Kaleta J, Blotny R, Harig H. Energy stored in a specimen under fatigue limit loading conditions[J]. Journal of Testing and Evaluation, 1990, 19(4): 326-333.

[3] 樊俊铃. 基于能量耗散的Q235钢高周疲劳性能评估[J]. 机械工程学报, 2018, 54(6): 1-8.

    Fan J L. High cycle fatigue behavior evaluation of Q235 steel based on energy dissipation[J]. Chinese Journal of Mechanical, 2018, 54(6): 1-8.

[4] 朱达荣, 徐德军, 刘涛, 等. 金属低周疲劳过程热力学熵特征分析及寿命预测模型[J]. 中国机械工程, 2019, 30(16): 1904-1910.

    Zhu D R, Xu D J, Liu T, et al. Thermodynamic entropy characteristics analysis and life prediction model of metal low cycle fatigue processes[J]. China Mechanical Engineering, 2019, 30(16): 1904-1910.

[5] Wang X G, Ran H R, Jiang C, et al. An energy dissipation-based fatigue crack growth model[J]. International Journal of Fatigue, 2018, 114: 167-176.

[6] de Finis R, Palumbo D, Ancona F, et al. Fatigue limit evaluation of various martensitic stainless steels with new robust thermographic data analysis[J]. International Journal of Fatigue, 2015, 74: 88-96.

[7] 张元良, 张洪潮, 赵嘉旭, 等. 高端机械装备再制造无损检测综述[J]. 机械工程学报, 2013, 49(7): 80-90.

    Zhang Y L, Zhang H C, Zhao J X, et al. Review of non-destructive testing for remanufacturing of high-end equipment[J]. Journal of Mechanical Engineering, 2013, 49(7): 80-90.

[8] 刘涛, 吕盛坪, 汪方斌, 等. 低周疲劳过程金属表面热像特征提取及其熵分析[J]. 兵器材料科学与工程, 2018, 41(1): 23-29.

    Liu T, Lü S P, Wang F B, et al. Feature extraction and entropy analysis of metal surface thermography in low cycle fatigue process[J]. Ordnance Material Science and Engineering, 2018, 41(1): 23-29.

[9] 刘永翔, 张健, 杜永成. 弥散介质遮蔽表面的红外成像测温方法[J]. 激光与光电子学进展, 2016, 53(9): 091201.

    Liu Y X, Zhang J, Du Y C. Infrared imaging temperature measurement for a shielded surface by diffuse medium[J]. Laser & Optoelectronics Progress, 2016, 53(9): 091201.

[10] 谢静, 杨晓燕, 徐长航, 等. 基于形态学方法的工件表面缺陷红外热像检测技术[J]. 中国石油大学学报(自然科学版), 2012, 36(3): 146-150.

    Xie J, Yang X Y, Xu C H, et al. Infrared thermal images detecting surface defect of steel specimen based on morphological algorithm[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(3): 146-150.

[11] 谢静, 徐长航, 陈国明. 基于MRF模型的金属工件红外热像表面缺陷检测[J]. 石油矿场机械, 2012, 41(11): 20-23.

    Xie J, Xu C H, Chen G M. An infrared thermo image processing framework based on MRF model to detect surface defect on a metal element[J]. Oil Field Equipment, 2012, 41(11): 20-23.

[12] Fan J L, Guo X L, Wu C W. A new application of the infrared thermography for fatigue evaluation and damage assessment[J]. International Journal of Fatigue, 2012, 44: 1-7.

[13] Hwang S, An Y K, Kim J M, et al. Monitoring and instantaneous evaluation of fatigue crack using integrated passive and active laser thermography[J]. Optics and Lasers in Engineering, 2019, 119: 9-17.

[14] Yang R Z, He Y Z, Gao B, et al. Inductive pulsed phase thermography for reducing or enlarging the effect of surface emissivity variation[J]. Applied Physics Letters, 2014, 105(18): 184103.

[15] Bai L B, Tian S L, Cheng Y H, et al. Reducing the effect of surface emissivity variation in eddy current pulsed thermography[J]. IEEE Sensors Journal, 2014, 14(4): 1137-1142.

[16] 牛继勇, 李范鸣, 马利祥. 热红外自发辐射偏振特性分析以及验证实验[J]. 光电工程, 2014, 41(2): 88-93.

    Niu J Y, Li F M, Ma L X. The theoretical analysis of thermal infrared emission polarization and experimental verification[J]. Opto-Electronic Engineering, 2014, 41(2): 88-93.

[17] 张哲, 刘欣悦, 王建立, 等. 分时型长波红外高帧频偏振成像实验研究[J]. 液晶与显示, 2019, 34(5): 508-514.

    Zhang Z, Liu X Y, Wang J L, et al. Division-of-time long-wave infrared high frame frequency polarization imaging experiment[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(5): 508-514.

[18] 赵永强, 马位民, 李磊磊. 红外偏振成像进展[J]. 飞控与探测, 2019( 3): 77- 84.

    Zhao YQ, Ma WM, Li LL. Progress of infrared polarimetric imaging detection[J]. Flight Control & Detection, 2019( 3): 77- 84.

[19] 马帅, 白廷柱, 曹峰梅, 等. 基于双向反射分布函数模型的红外偏振仿真[J]. 光学学报, 2009, 29(12): 3357-3361.

    Ma S, Bai T Z, Cao F M, et al. Infrared polarimetric scene simulation based on bidirectional reflectance distribution function model[J]. Acta Optica Sinica, 2009, 29(12): 3357-3361.

[20] 王琪, 梁静秋, 梁中翥, 等. 分孔径红外偏振成像仪光学系统设计[J]. 中国光学, 2018, 11(1): 92-99.

    Wang Q, Liang J Q, Liang Z Z, et al. Design of decentered aperture-divided optical system of infrared polarization imager[J]. Chinese Journal of Optics, 2018, 11(1): 92-99.

[21] 陈伟力, 武敬力, 徐文斌, 等. 基于黑体红外偏振特性的定量分析探索[J]. 红外与毫米波学报, 2017, 36(6): 767-775.

    Chen W L, Wu J L, Xu W B, et al. Quantitative analysis based on infrared polarization characteristic of black body[J]. Journal of Infrared and Millimeter Waves, 2017, 36(6): 767-775.

[22] 陈伟力, 王淑华, 金伟其, 等. 基于偏振微面元理论的红外偏振特性研究[J]. 红外与毫米波学报, 2014, 33(5): 507-514.

    Chen W L, Wang S H, Jin W Q, et al. Research of infrared polarization characteristics based on polarization micro-surface theory[J]. Journal of Infrared and Millimeter Waves, 2014, 33(5): 507-514.

[23] 汪震. 金属表面热红外偏振特性的模型研究[J]. 光学学报, 2009, 29(3): 707-711.

    Wang Z. Model of polarized thermal emission from rough metal surface[J]. Acta Optica Sinica, 2009, 29(3): 707-711.

[24] 汪震, 洪津, 叶松, 等. 金属表面粗糙度对热红外偏振特性影响研究[J]. 光子学报, 2007, 36(8): 1500-1503.

    Wang Z, Hong J, Ye S, et al. Study on effect of metal surface roughness on polarized thermal emission[J]. Acta Photonica Sinica, 2007, 36(8): 1500-1503.

[25] 汪震, 乔延利, 洪津, 等. 金属板热红外偏振的方向特性研究[J]. 光电工程, 2007, 34(6): 49-52.

    Wang Z, Qiao Y L, Hong J, et al. Thermal emission polarization of metal plate at different viewing angles[J]. Opto-Electronic Engineering, 2007, 34(6): 49-52.

[26] 樊俊铃, 郭杏林, 吴承伟. 疲劳特性的红外热像定量分析方法研究进展[J]. 力学与实践, 2012, 34(6): 7-17.

    Fan J L, Guo X L, Wu C W. Fatigue characterisation based on quantitative infrared thermography[J]. Mechanics and Engineering, 2012, 34(6): 7-17.

[27] Mortezavi V, Haghshenas A, Khonsari M M, et al. Fatigue analysis of metals using damping parameter[J]. International Journal of Fatigue, 2016, 91: 124-135.

[28] Nowick AS, Berry BS. An elastic relaxation in crystalline solids[M]. New York: Academic Press, 1972.

[29] Haghshenas A, Khonsari M M. Damage accumulation and crack initiation detection based on the evolution of surface roughness parameters[J]. International Journal of Fatigue, 2018, 107: 130-144.

[30] Man J, Obrtlík K, Polák J. Extrusions and intrusions in fatigued metals. Part 1. State of the art and history[J]. Philosophical Magazine, 2009, 89(16): 1295-1336.

[31] 张大舜, 于洋, 陈亮. 粗糙表面的发射率特性研究[J]. 沈阳理工大学学报, 2006, 25(3): 74-76.

    Zhang D S, Yu Y, Chen L. Study of the emissivity feature on the rough surface[J]. Transactions of Shenyang Ligong University, 2006, 25(3): 74-76.

汪方斌, 孙凡, 朱达荣, 刘涛, 王雪, 王峰. 一种基于偏振热像的金属疲劳损伤评估方法[J]. 光学学报, 2020, 40(14): 1412002. Fangbin Wang, Fan Sun, Darong Zhu, Tao Liu, Xue Wang, Feng Wang. Metal Fatigue Damage Assessment Based on Polarized Thermography[J]. Acta Optica Sinica, 2020, 40(14): 1412002.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!