中国光学, 2013, 6 (6): 930, 网络出版: 2013-12-24   

日-地系拉格朗日L1点太阳观测器热设计

Thermal design of solar observer at L1 Lagrangian point in Sun-Earth system
王祥 1,2,*李义 1杨献伟 1
作者单位
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
对将运行于日-地L1点的太阳观测器进行了热设计, 重点论述了日-地L1点的轨道外热流计算和Lyman α日冕仪(LACI)反射镜M2光阱、Lyman α日冕成像仪(LADI)滤光片组件、CCD组件、电箱、观测器主体等部分的热设计方案。通过在探测器对日面设置集热板, 将观测器的主动加热功耗降低了73%; 选用预埋热管的设计方案解决了对日定向观测导致的框架温差问题。仿真分析结果表明, 在对日高温工作、对日低温工作、低温存储、轨道转移等4个极端工况下, 观测器各组件温度均满足指标要求。该热设计方案以较低的加热功耗, 解决了太阳观测器在轨工作阶段的散热、轨道转移阶段的保温等问题, 满足CCD焦面工作温度<-50 ℃的要求。
Abstract
To ensure the temperature requirements of the solar observer working at L1 Lagrangian point, the thermal design for Lyman α Coronagraphy Imager(LACI) and Lyman α Disk Image(LADI) was carried out, and the heat flux of the orbit was calculated. The thermal designs of light trap, filter components, detector components, electric box, and entirety of the observer were discussed in details. By using collector panels settled in the side facing to the Sun, the active heating power could be reduced by 73%. In order to reduce the temperature gradient caused by long-term observation facing to the sun, a heat pipe was embedded in the frame. Simulation results show that all conditions meet the temperature indicator in 4 typical cases. The thermal design system with a low active power solves many problems, such as the cooling of the observer in orbit, insulation during orbital transfer phase, and meets the working temperature requirement of below -50 ℃ for a CCD plane.
参考文献

[1] 彭吉龙, 李宝权, 韦飞, 等.空间太阳极紫外(EUV)成像望远镜[J].光学技术, 2008, 34(增刊): 92-97.

    PENG J L,LI B Q,WEI F,et al.. Space Solar extreme ultraviolet(EUV) imaging telescope[J]. Opt. Technique,2008,34(Sup): 92-97.

[2] 刘建忠.日-地系拉格朗日点任务极其转移轨道设计方法[J].导弹与航天运载技术, 2009, 299(1): 7-10.

    LIU J ZH. Missions of sun-earth Lagrange points and design method of transfer trajectory[J]. Missile and Space Vehicle, 2009,299(1): 7-10.(in Chinese)

[3] DEFISE J M,ROCHUS P. Lessons learned from the thermal design of an instrument(EIT, the extreme-UV imaging telescope) on board SOHO[C].27th International Conference on Environmental Systems, Lake Takoe, Nevada, July 1997.

[4] 李国强, 贾宏, 陈恩涛, 等. 空间太阳望远镜主镜精密温度控制方案介绍[J]. 光子学报, 2007,36(增刊): 239-243.

    LI G Q,JIA H,CHEN E T,et al.. Introduction for precise thermal control of space solar telescope main mirror[J]. Acta Photonica Sinica,2007,36(sup): 239-243.(in Chinese)

[5] 向艳超, 吴燕、邵兴国.深空探测器热控制系统设计方法研究[J].航天器工程, 2007,16(6): 82-86.

    XIANG Y C,WU Y,SHAO X G. Investigation on thermal control design methods of deep space spacecraft[J]. Spacecraft Eng.,2007, 16(6): 82-86. (in Chinese)

[6] 王绍武.太阳常数[J].气候变化研究进展, 2009,5(1): 61-62.

    WANG ZH W. Solar constant[J]. Advances in Climate Change Research,2009,5(1): 61-62.

[7] KURTZ M J,EICHHORN G,ACCOMAZZI A,et al.. The NASA astrophysics data system: overview[J]. Astronomy and Astrophysics,2000,143: 41-59.

[8] 闵桂荣, 郭舜.航天器热控制[M].北京: 科学出版社, 1998.

    MIN G R, GUO S. Spacecraft Thermal Control[M]. Beijing: Science Press,1998.(in Chinese)

[9] 王刚.太阳能利用中的热物理基础理论及实验研究[D].合肥: 中国科学技术大学, 2012.

    WANG G. Fundamental theoretical and experimental study of thermo-physics in solar energy utilization[D]. Hefei: University of science and technology of China,2012.

[10] 韩冬, 吴清文, 卢锷, 等.多姿态变化相机中CCD焦面组件的热设计[J].光学 精密工程, 2009, 17(11): 2665-2671.

    HAN D,WU Q W,LU E,et al.. Thermal design of CCD focal assemblies for attitude-varied space cameras[J]. Opt. Precision Eng., 2009,17(11): 2665-2671.(in Chinese)

[11] 李炜征, 邱利民, 栗鹏.低温热管的最新研究进展[J].低温与特气, 2004,22(1): 1-6.

    LI W Z, QIU L M, LI P. Recent research and development of cryogenic heat pipes[J]. Low Temperature and Specialty Cases,2004,22(1): 1-6.(in Chinese)

[12] 陈立恒, 徐抒岩.高分辨率空间相机电控箱热设计[J].光学 精密工程, 2011,19(1): 69-76.

    CHEN L H,XU SH Y. Thermal design of electric cabinet for high-resolution space camera[J]. Opt. Precision Eng., 2011,19(1): 69-76.(in Chinese)

[13] 闵桂荣, 张正纲, 何知朱.卫星热控制技术第二版[M].北京: 中国宇航出版社, 2009.

    MIN G R, ZAHNG Z G, HE ZH ZH. Spacecraft Thermal Control Technology[M]. Beijing: China Space Navigation Press,1998.(in Chinese)

[14] 吴清文, 王领华, 杨献伟, 等.炭/炭复合材料在空间光学遥感器热控制中的应用[J].光学 精密工程, 2012,20(9): 1984-1990.

    WU Q W,WANG L H,YANG X W,et al.. Application of carbon-carbon composites to thermal control of space optical instrument[J]. Opt. Precision Eng., 2012,20(9): 1984-1990.(in Chinese)

[15] 冯伟泉, 丁义刚, 闫德葵, 等.地球同步轨道长寿命卫星热控涂层太阳吸收率性能退化研究[J].中国空间科学技术, 2005,2: 34-40.

    FENG W Q,DING Y G,YAN D K,et al.. Study on long term duration of solar absorptance properties of geostationary satellite thermal control coating[J]. Chinese Space Science and Technology,2005,2: 34-40.(in Chinese)

[16] 杨献伟, 吴清文, 李书胜, 等.空间光学遥感器热设计[J].中国光学, 2011,4(2): 139-146.

    YANG X W,WU Q W,LI S S,et al.. Thermal design of space optical remote sensor[J]. Chinese Optics,2011,4(2): 139-146.(in Chinese)

[17] 郭亮, 吴清文, 颜昌翔.空间光谱成像仪热设计及其分析与验证[J].光学 精密工程, 2011, 19(6): 1272-1280.

    GUO L,WU Q W,YAN C X. Thermal design of space spectral imaging apparatus and its analysis and verification[J].Opt. Precision Eng., 2011,19(6): 1272-1280.(in Chinese)

王祥, 李义, 杨献伟. 日-地系拉格朗日L1点太阳观测器热设计[J]. 中国光学, 2013, 6(6): 930. WANG Xiang, LI Yi, YANG Xian-wei. Thermal design of solar observer at L1 Lagrangian point in Sun-Earth system[J]. Chinese Optics, 2013, 6(6): 930.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!