光学学报, 2020, 40 (24): 2410001, 网络出版: 2020-11-23   

基于深度学习的细胞骨架图像超分辨重建 下载: 1531次

Super-Resolution Reconstruction of Cytoskeleton Image Based on Deep Learning
作者单位
1 弱光非线性光子学教育部重点实验室, 南开大学物理科学学院, 泰达应用物理研究院, 天津 300071
2 天津大学精密仪器与光电子工程学院, 光电信息技术教育部重点实验室, 天津 300072
3 药物化学生物学国家重点实验室, 南开大学生命科学学院, 天津 300071
4 极端光学协同创新中心, 山西大学, 山西 太原 030006
引用该论文

胡芬, 林洋, 侯梦迪, 胡浩丰, 潘雷霆, 刘铁根, 许京军. 基于深度学习的细胞骨架图像超分辨重建[J]. 光学学报, 2020, 40(24): 2410001.

Fen Hu, Yang Lin, Mengdi Hou, Haofeng Hu, Leiting Pan, Tiegen Liu, Jingjun Xu. Super-Resolution Reconstruction of Cytoskeleton Image Based on Deep Learning[J]. Acta Optica Sinica, 2020, 40(24): 2410001.

参考文献

[1] Klar T A, Jakobs S, Dyba M, et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(15): 8206-8210.

[2] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645.

[3] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-795.

[4] Fletcher D A, Mullins R D. Cell mechanics and the cytoskeleton[J]. Nature, 2010, 463(7280): 485-492.

[5] Xu K, Babcock H P, Zhuang X. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton[J]. Nature Methods, 2012, 9(2): 185-188.

[6] Xu K, Zhong G, Zhuang X. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons[J]. Science, 2013, 339(6118): 452-456.

[7] Pan L T, Yan R, Li W, et al. Super-resolution microscopy reveals the native ultrastructure of the erythrocyte cytoskeleton[J]. Cell Reports, 2018, 22(5): 1151-1158.

[8] Guo Y T, Li D, Zhang S W, et al. Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales[J]. Cell, 2018, 175(5): 1430-1442.

[9] Pan L T, Zhang P, Hu F, et al. Hypotonic stress induces fast, reversible degradation of the vimentin cytoskeleton via intracellular calcium release[J]. Advanced Science, 2019, 6(18): 1900865.

[10] 潘雷霆, 胡芬, 张心正, 等. 多色单分子定位超分辨显微成像术[J]. 光学学报, 2017, 37(3): 0318010.

    Pan L T, Hu F, Zhang X Z, et al. Multicolor single-molecule localization super-resolution microscopy[J]. Acta Optica Sinica, 2017, 37(3): 0318010.

[11] Obermeyer Z, Emanuel E J. Predicting the future-big data, machine learning, and clinical medicine[J]. The New England Journal of Medicine, 2016, 375(13): 1216-1219.

[12] Camacho D M, Collins K M, Powers R K, et al. Next-generation machine learning for biological networks[J]. Cell, 2018, 173(7): 1581-1592.

[13] Carleo G, Cirac I, Cranmer K, et al. Machine learning and the physical sciences[J]. Reviews of Modern Physics, 2019, 91(4): 045002.

[14] Ramprasad R, Batra R, Pilania G, et al. Machine learning in materials informatics: Recent applications and prospects[J]. Npj Computational Materials, 2017, 3: 54.

[15] Guei A C, Akhloufi M. Deep learning enhancement of infrared face images using generative adversarial networks[J]. Applied Optics, 2018, 57(18): D98-D107.

[16] 陈洋, 范荣双, 王竞雪, 等. 基于深度学习的资源三号卫星遥感影像云检测方法[J]. 光学学报, 2018, 38(1): 0128005.

    Chen Y, Fan R S, Wang J X, et al. Cloud detection of ZY-3 satellite remote sensing images based on deep learning[J]. Acta Optica Sinica, 2018, 38(1): 0128005.

[17] Guirado E, Tabik S, Rivas M L, et al. Whale counting in satellite and aerial images with deep learning[J]. Scientific Reports, 2019, 9(1): 14259.

[18] Shi J, Liu Q, Wang C, et al. Super-resolution reconstruction of MR image with a novel residual learning network algorithm[J]. Physics in Medicine and Biology, 2018, 63(8): 085011.

[19] Song T A, Chowdhury S R, Yang F, et al. Super-resolution PET imaging using convolutional neural networks[J]. IEEE Transactions on Computational Imaging, 2020, 6: 518-528.

[20] DongC, Loy CC, He KM, et al.Learning a deep convolutional network for image super-resolution[M] //Computer Vision-ECCV 2014. Cham: Springer International Publishing, 2014: 184- 199.

[21] Lai W S, Huang J B, Ahuja N, et al. Fast and accurate image super-resolution with deep Laplacian pyramid networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2599-2613.

[22] Du X F, Qu X B, He Y F, et al. Single image super-resolution based on multi-scale competitive convolutional neural network[J]. Sensors, 2018, 18(3): 789.

[23] Wang ZH, ChenJ, Hoi S C H. Deep learning for image super-resolution: A survey[EB/OL]. ( 2019-02-16)[2020-07-08]. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9044873.

[24] 吴磊, 吕国强, 薛治天, 等. 基于多尺度递归网络的图像超分辨率重建[J]. 光学学报, 2019, 39(6): 0610001.

    Wu L, Lü G Q, Xue Z T, et al. Super-resolution reconstruction of images based on multi-scale recursive network[J]. Acta Optica Sinica, 2019, 39(6): 0610001.

[25] 席志红, 侯彩燕, 袁昆鹏, 等. 基于深层残差网络的加速图像超分辨率重建[J]. 光学学报, 2019, 39(2): 0210003.

    Xi Z H, Hou C Y, Yuan K P, et al. Super-resolution reconstruction of accelerated image based on deep residual network[J]. Acta Optica Sinica, 2019, 39(2): 0210003.

[26] Christiansen E M, Yang S J, Ando D M, et al. In silico labeling: Predicting fluorescent labels in unlabeled images[J]. Cell, 2018, 173(3): 792-803.

[27] Ouyang W, Aristov A, Lelek M, et al. Deep learning massively accelerates super-resolution localization microscopy[J]. Nature Biotechnology, 2018, 36(5): 460-468.

[28] Wu Y, Rivenson Y, Wang H, et al. Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning[J]. Nature Methods, 2019, 16(12): 1323-1331.

[29] Newby J M, Schaefer A M, Lee P T, et al. Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D[J]. Proceedings of the National Academy of Sciences, 2018, 115(36): 9026-9031.

[30] Zelger P, Kaser K, Rossboth B, et al. Three-dimensional localization microscopy using deep learning[J]. Optics Express, 2018, 26(25): 33166-33179.

[31] Hershko E, Weiss L E, Michaeli T, et al. Multicolor localization microscopy and point-spread-function engineering by deep learning[J]. Optics Express, 2019, 27(5): 6158-6183.

[32] Kim T, Moon S, Xu K. Information-rich localization microscopy through machine learning[J]. Nature Communications, 2019, 10(1): 1996.

[33] LimB, SonS, KimH, et al.Enhanced deep residual networks for single image super-resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), July 21-26, 2017, Honolulu, HI, USA.New York: IEEE Press, 2017: 1132- 1140.

[34] Huang B, Wang W Q, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319(5864): 810-813.

[35] ZontakM, IraniM. Internal statistics of a single natural image[C]//IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos: IEEE Computer Society Press, 2011: 977- 984.

胡芬, 林洋, 侯梦迪, 胡浩丰, 潘雷霆, 刘铁根, 许京军. 基于深度学习的细胞骨架图像超分辨重建[J]. 光学学报, 2020, 40(24): 2410001. Fen Hu, Yang Lin, Mengdi Hou, Haofeng Hu, Leiting Pan, Tiegen Liu, Jingjun Xu. Super-Resolution Reconstruction of Cytoskeleton Image Based on Deep Learning[J]. Acta Optica Sinica, 2020, 40(24): 2410001.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!