光子学报, 2013, 42 (5): 511, 网络出版: 2013-05-22  

矢量光束界面反射透射的自旋霍耳效应

Spin Hall Effect of the Reflected and Transmitted Vector Light Beam Between the Interfaces
作者单位
1 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室,西安 710119
2 西安通信学院,西安 710106
摘要
矢量光束的一般表示方法是利用投影矩阵和广义琼斯矢量的乘积描述.投影矩阵存在一个自由度,该自由度与有限光束的场矢量偏振状态有关,由特定的单位矢量与波矢量间的方位角决定,可以定量地描述矢量光束的偏振状态.本文在矢量光束描述的理论基础上,通过对投影矩阵进行与反射光束与透射光束传播方向相应的坐标旋转,根据麦克斯韦方程组及其边界条件,计算讨论在各向同性介质界面上反射、透射矢量光束的表示形式以及其自旋霍尔效应表现出的横向位移.线偏振光(光子自旋量为σ=0)横向位移为零,圆偏振光束(光子自旋量为σ=±1)位移量最大且左圆偏振与右圆偏振光束的位移大小相等方向相反,进一步分析了左圆偏振光束在界面上的反射、透射光束的横向位移与入射角的关系.
Abstract
The finite electromagnetic vector is achieved by factorizing into a mapping matrix and a Jones vector. The vectorial property can be described by a degree of freedom of the mapping matrix that can be determined by the azimuthal angle of a fixed unit vector with respect to the wave vector. The representation formalism of the reflected and transmitted vector light beams is theoretically developed between the interfaces. The transverse shift, which is correlative with the spin Hall effect, is discussed. The transverse shift of the linearly polarized light beam (σ=0) is zero. The transverse shift of the circularly polarized light beam (σ=±1) is maximum and the left and right circularly polarized light beam is the same.The dependence of transverse shift of the left circularly polarized light beam on the incidence angle is algo analyzed.
参考文献

[1] ZHAN Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

[2] MOSER T, GLUR H, ROMANO V, et al. Polarization selective grating mirrors used in the generation of radial polarization[J]. Applied Physics B, 2005, 80(6): 707-713.

[3] KOZAWA Y, SATO S. Generation of a radially polarized laser beam by use of a conical Brewster prism[J]. Optics Letters, 2005, 30(22): 3063-3065.

[4] YOUNGWORTH K S, BROWN T G. Focusing of high numerical aperture cylindrical vector beams[J]. Optics Express, 2000, 7(2): 77-87.

[5] DORN R, QUABIS S, LEUCHS G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 2003, 91(23): 2339011- 4.

[6] ZHAN Q. Trapping metallic Rayleigh particles with radial polarization[J]. Optics Express, 2004, 12(15): 3377-3382.

[7] GUO H, CHEN J, ZHUANG S. Vector plane wave spectrum of an arbitrary polarized electromagnetic wave[J]. Optics Express, 2006, 14(6): 2095-2100.

[8] 周国泉. 非傍轴矢量高斯光束的传输[J]. 物理学报, 2005, 54(4): 1572-1577.

    ZHOU Guoquan. Propagation of nonparaxial vector Gaussian beam[J]. Acta Physica Sinica, 2005, 54(4): 1572-1577.

[9] YAN S, YAO B. Radiation forces of a highly focused radially polarized beam on spherical particles[J]. Physical Review A, 2007, 76(5): 0538361-6.

[10] ASHKIN A. History of optical trapping and manipulation of small neutral particle atoms and molecules[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 841-856.

[11] PATERSON L, MACDONALD M P, ARLTETAL J. Controlled rotation of optically trapped microscopic particles[J]. Science, 2001, 292(5518): 912-914.

[12] XU X, KIM K, JHE W, et al. Efficient optical guiding of trapped cold atoms by a hollow laser beam [J] . Physical Review A, 2001, 63(6): 063401.

[13] BISS D P, YOUNGWORTH K S, BROWN T G. Dark field imaging with cylindrical vector beams[J]. Applied Optics, 2006, 45(3): 470-479.

[14] MARTINEZHERRERO R, MEJIAS P M, BOSCH S, et al. Vectorial structure of nonparaxial electromagnetic beams[J]. JOSA, 2001, 18(7): 1678-1680.

[15] CHEN C G, KONKOLA P T, FERRERA J, et al. Analyses of vector Gaussian beam propagation and the validity of paraxial and spherical approximations[J]. JOSA A, 2002, 19(2): 404-412.

[16] WOLF E. Unified theory of coherence and polarization of random electromagnetic beams[J]. Physics Letters A, 312(56): 263-267.

[17] KOROTKOVAA O, WOLF E. Changes in the state of polarization of a random electromagnetic beam on propagation [J]. Optics Communications, 2005, 246(13): 35-43.

[18] LI C F. Spin and orbital angular momentum of a class of nonparaxial light beams having a globally defined polarization[J]. Physical Review A, 2009, 80(6): 063814(11).

[19] FEDOROV F I. K Teorii polnogo otrazheniya[J]. Doklady Akademii Nauk SSSR, 1955, 105: 465-468.

[20] IMBERT C. Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam[J]. Physical Review D , 1972, 5(4): 7870796.

[21] RENARD R H. Total reflection: a new evaluation of the Gooshnchen shift[J]. JOSA, 1964, 54(10): 1190-1196.

[22] ONODA M, MURAKAMI S, NAGAOSA N. Hall effect of light[J]. Physical Review Letters, 2004, 93(8): 083901.

[23] BLIOKH K Y, YU P. Conservation of angular momentum transverse shift and spin Hall effect in reflection and refraction of an electromagnetic wave packet[J]. Physical Review Letters, 2006, 96(7): 073903.

[24] BLIOKH K Y, NIV A, KLEINER V, et al. Geometrodynamics of spinning light[J]. Nature Photonics, 2008 , 2(12): 748-753.

[25] LI C F. Representation theory for vector electromagnetic beams[J]. Physical Review A, 2008, 78(6): 063831.

[26] LI C F. Physical evidence for a new symmetry axis of electromagnetic beams[J]. Physical Review A, 2009, 79(5): 053819.

[27] HOSTEN O, KWIAT P. Observation of the spin hall effect of light via weak measurements[J]. Science, 2008, 319(5864): 787-790.

[28] HERMOSA N, NUGROWATI A M, ANDREA Aiello, et al. Spin hall effect of light in metallic reflection[J]. Optics Letters , 2011, 36: 3200-3202.

[29] MNARD J M, MATTACCHIONE A E, et al. Ultrafast optical imaging of the spin Hall effect of light in semiconductors[J]. Physical Review B, 2010, 82(4): 045303.

段弢, 谢小平, 段杰, 钱凤臣, 严绍辉. 矢量光束界面反射透射的自旋霍耳效应[J]. 光子学报, 2013, 42(5): 511. DUAN Tao, XIE Xiaoping, DUAN Jie, QIAN Fengchen, YAN Shaohui. Spin Hall Effect of the Reflected and Transmitted Vector Light Beam Between the Interfaces[J]. ACTA PHOTONICA SINICA, 2013, 42(5): 511.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!