发光学报, 2013, 34 (8): 982, 网络出版: 2013-08-28   

稀土掺杂的NaGdF4上转换发光材料的合成与发光特性研究

Synthesis and Luminescence Properties of Rare Earth Doped NaGdF4 Upconversion Phosphors
作者单位
沈阳化工大学 材料科学与工程学院, 辽宁 沈阳110142
摘要
采用水热法制备了一系列不同掺杂浓度的NaGdF4∶Re(Re=Tm3+, Er3+, Yb3+)上转换发光粉。通过X射线衍射(XRD)、电子扫描电镜(SEM)和上转换发射光谱对样品进行了表征。XRD研究结果表明: 合成的样品均为六方结构NaGdF4。估算的平均晶粒尺寸为41~43 nm。在980 nm红外光激发下, Er3+和Yb3+共掺杂的NaGdF4发光粉发出分别来自于Er3+离子2H11/ 2,4S3/2→4I15/2跃迁的绿光和4F9/2→4I15/2跃迁的红光发射, Tm3+和Yb3+共掺杂的NaGdF4发光粉发出分别来自Tm3+离子的1G4→3H6跃迁的蓝光、1G4→3F4和3F2,3→3H6跃迁的红光和3H4→3H6跃迁的近红外光发射。Er3+,Tm3+和Yb3+共掺杂的NaGdF4发光粉的发光强度及红、绿、蓝光发射的相对强度受Yb3+离子掺杂浓度的影响。对样品中可能的上转换发光机制进行了讨论。计算的色坐标显示: 可通过改变掺杂离子浓度对上转换发光的颜色进行调控。
Abstract
A series of NaGdF4∶Re(Re=Tm3+, Er3+, Yb3+) upconversion luminescence phosphors with various doping concentrations were prepared by a hydrothermal method. X-ray diffraction (XRD), field emission scanning electron microscope (SEM) and upconversion (UC) emission spectra were used to characterize the samples. The results of XRD indicate that all the samples are hexagonal phase NaGdF4. The average crystallite sizes are estimated to be 41~43 nm. Under 980 nm laser excitation, the Er3+ and Yb3+ codoped NaGdF4 phosphors show green emission from 2H11/ 2→4I15/2 and 4S3/2→4I15/2 transitions of Er3+ ions, the red emissions attributed to 4F9/2→4I15/2 transitions of Er3+ ions, respectively. The Tm3+ and Yb3+ codoped NaGdF4 phosphors show blue emission from 1G4→3H6 transitions of Tm3+ ions, red emission assigned to 1G4→3F4 and 3F2,3→3H6 transitions of Tm3+ ions, near-infrared corresponding to the 3H4→3H6 transitions of Tm3+ ions, respectively. The upconversion luminescence intensity and a relative intensity of red, green and blue emission are governed by the doping Yb3+ concentrations in Er3+, Tm3+ and Yb3+ tridoped NaGdF4 phosphors. The possible upconversion luminescence mechanisms of the samples are discussed. The calculated CIE color coordinates display that the upconversion luminescence color can be tuned by varying the doping ions concentration.
参考文献

[1] Zheng K Z, Zhang D S, Zhao D, et al. Bright white upconversion emission from Yb3+, Er3+, and Tm3+-codoped Gd2O3 nanotubes [J]. Phys. Chem. Chem. Phys., 2010, 12(27):7620-7625.

[2] Cao Y L. Applications of infrared up-conversion materials in anti-counterfeiting technology [J]. Laser & Infrared (红外与激光), 2001, 31(3):190-191 (in Chinese).

[3] Li H, Yang K S, Qi N, et al. Preparation and luminescence properties of Yb3+/Er3+- codoped oxyfluoride glass ceramics [J]. Chin. Opt.(中国光学), 2011, 4(6):672-677 (in Chinese).

[4] Yang F Z, Yi G S, Chen D P, et al. Synthesis and up-conversion luminescence properties of nanocrystal Yb, Ho co-doped sodium yttrium fluoride [J]. Chem. J. Chin. Univ.(高等学校化学学报), 2004, 25(9):1589-1592 (in Chinese).

[5] Xing M M, Cao W H, Fu Y, et al. Synthesis of Y2O3∶Yb,Er nanocrystals by complex precipitation method and its up-conversion luminescence properties [J]. J. Funct. Mater.(功能材料), 2006, 37(9):1375-1377 (in Chinese).

[6] Mahalingam V, Mangiarini F, Vetrone F, et al. Bright white upconversion emission from Tm3+/Yb3+/Er3+-doped Lu3Ga5O12 nanocrystals [J]. J. Phys. Chem. C, 2008, 112(46):17745-17749.

[7] Wang D G, Zhou Y X, Wang X S, et al. Upconversion luminescence of Tm3+ /Ho3+ /Yb3+ codoped tellurite glass used for white light emission [J]. Acta Phys. Sinica (物理学报), 2010, 59(9):6256-6260 (in Chinese).

[8] Luo X X, Cao W H. Blue, green, red upconversion luminescence and optical characteristics of rare earth doped rare earth oxide and oxysulfide [J]. Science China (Series B: Chemistry), 2007, 37(2):148-155.

[9] Tan M C, Al-Baroudi L, Riman R E. Surfactant effects on efficiency enhancement of infrared-to-visible upconversion emissions of NaYF4∶Yb-Er [J]. ACS Appl. Mater. Interf., 2011, 3(10):3910-3915.

[10] Zhang C M, Ma P A, Li C X, et al. Controllable and white upconversion luminescence in BaYF5∶Ln3+ (Ln=Yb, Er, Tm) nanocrystals [J]. J. Mater. Chem., 2011, 21(3):717-723.

[11] Sivakumar S, Van Veggel F C J M, Raudsepp M. Bright white light through up-conversion of a single NIR source from sol-gel-derived thin film made with Ln3+-doped LaF3 nanoparticles [J]. J. Am. Chem. Soc., 2005, 127(36):12464-12465.

[12] Liang L F, Zhuang J L, Wu H, et al. White up-conversion emission of hydrothermally synthesized hexagonal NaYbF4∶Er3+ /Tm3+ [J]. Chin. J. Lumin.(发光学报), 2008, 29(6):996-1002 (in Chinese).

[13] Wang G F, Qin W P, Xu Y, et al. Size-dependent upconversion luminescence in YF3∶Yb3+/Tm3+ nanobundles [J]. J. Fluorine Chem., 2008, 129(11):1110-1113.

[14] Wu Y, Li C X, Yang D M, et al. Rare earth β-NaGdF4 fluorides with multiform morphologies: Hydrothermal synthesis and luminescent properties [J]. J. Colloid Interf. Sci., 2011, 354(2):429-436.

[15] Cao C Y, Qin W P, Zhang J S. Study on up-conversion emissions of Yb3+/Tm3+ co-doped GdF3 and NaGdF4 [J]. Opt. Commun., 2010, 283(4):547-550.

[16] Xin F X, Zhao S L, Huang L H, et al. Up-conversion luminescence of Er3+-doped glass ceramics containing β-NaGdF4 nanocrystals for silicon solar cells [J]. Mater. Lett., 2012, 78(30th Anniversary Special Issue):75-77.

[17] Degejihu, Menggenlabuqi, Si Q. Bright white light through up-conversion of a single NIR source from β-NaGd0.794Yb0.200-Ho0.001Tm0.005F4 nanoparticles [J]. Chin. J. Lumin.(发光学报), 2010, 31(5):737-742 (in Chinese).

[18] Li Y H, Hong G Y, Zhang Y M, et al. Red and green upconversion luminescence of Gd2O3∶Er3+,Yb3+ nanoparticles [J]. J. Alloys Compd., 2008, 456(1-2):247-250.

李艳红, 臧国凤, 马晶, 刘宇田. 稀土掺杂的NaGdF4上转换发光材料的合成与发光特性研究[J]. 发光学报, 2013, 34(8): 982. LI Yan-hong, ZANG Guo-feng, MA Jing, LIU Yu-tian. Synthesis and Luminescence Properties of Rare Earth Doped NaGdF4 Upconversion Phosphors[J]. Chinese Journal of Luminescence, 2013, 34(8): 982.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!