大气与环境光学学报, 2018, 13 (6): 462, 网络出版: 2018-12-25  

联合CloudSat-CALIPSO-MODIS进行云相态检测的新方法

New Method for Cloud Phase Retrieval With Combined CloudSat-CALIPSO-MODIS Observations
作者单位
1 安徽师范大学国土资源与旅游学院, 安徽 芜湖 241000
2 安徽省资源环境与地理信息系统工程技术研究中心, 安徽 芜湖 241000
3 中国科学院遥感与数字地球研究所, 北京 100101
摘要
云与生活息息相关,云参量的定量研究便显得极其重要 ,其中包括云相态的精确判识。由于传统基于单传感器的云相态识别 算法都存在一定的局限性,提出了联合CloudSat-CALIPSO-MODIS多传感器进行云相态检测的新方法,提高了云相态的识别精度。 利用2008年5月2日和2010年2月1日的CloudSat、CALIPSO、MODIS综合观测数据,获取了6种云相态,包括不确定云,混合云, 水云,过冷水云,冰云和晴空。 结果表明协同算法可以更精确地进行云相态识别,并为数值天气预报提供条件,具有重要的科学意义。
Abstract
Clouds are related to life closely, and research on cloud parameters is important, including the accurate identification of cloud phases. Because the traditional single-sensor-based cloud phase identification algorithm has certain limitations, a new method for cloud phase detection combined with CloudSat-CALIPSO-MODIS multi-sensor is proposed, which improves the accuracy of cloud phase recognition. Using the comprehensive observation data of CloudSat, CALIPSO and MODIS on May 2, 2008 and February 1, 2010, six cloud phases were obtained, including uncertain cloud, hybrid cloud, water cloud, supercooled water cloud, ice cloud and clear skies. The results show that using the synergistic algorithm, the cloud phase can be distinguished more accurately, which provides conditions for numerical weather prediction and has important scientific significance.
参考文献

[1] Intergovernmental Panel on Climate Change. Climate Change 2013: Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis[R]. 2013.

[2] Stubenrauch C J, Cros S, Guignard A,et al. A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat[J]. Atmospheric Chemistry And Physics, 2010, 10: 7197-7214.

[3] Urankar G, Prabha T V, Pithurai G,et al. Aerosol and cloud feedbacks on surface energy balance over selected regions of the indian subcontinent[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D4): 183-204.

[4] Probst P, Rizzi R, Tosi E,et al. Total cloud cover from satellite observations and climate models[J]. Atmospheric Research, 2012, 107: 161-170.

[5] Ma J, Wu H, Wang C,et al. Multiyear satellite and surface observations of cloud fraction over China[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(12): 7655-7666.

[6] Sodergren H, Mcdonald A, Bodeker G. An energy balance model exploration of the impacts of interactions between surface albedo, water vapour and clouds on polar amplification[C].EGU General Assembly Conference Abstract, 2017, 19: 11025.

[7] Yoshida R, Okamoto H, Hagihara Y,et al. Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio[J].Journal of Geophysical Research: Atmospheres, 2010, 115(D4): D00H32.

[8] Dolinar E K, Dong X, Xi B. Evaluation and intercomparison of clouds, precipitation, and radiation budgets in recent reanalyses using satellite-surface observations[J].Climate Dynamics, 2016, 4(7-8): 2123-2144.

[9] Cesana G, Chepfer H. Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP[J].Journal of Geophysical Research: Atmospheres, 2013, 118(14): 7922-7937.

[10] Thompson D R, Mccubbin I, Gao B C,et al. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy[J]. Journal of Geophysical Research: Atmospheres. 2016, 121(15): 9174-9190.

[11] Riedi J, Marchant B, Platnick S,et al. Cloud thermodynamic phase inferred from merged POLDER and MODIS data[J]. Atmospheric Chemistry And Physics, 2010, 10(23): 11851-11865.

[12] Twohy C H, Schanot A J, Cooper W A. Measurement of condensed water content in liquid and ice clouds using an airborne counterflow virtual impactor[J].Journal of Atmospheric and Oceanic Technology, 1997, 14(1): 197-202.

[13] Lin D. Temporal and spatial distribution and change trend of cloud water of different types clouds in southwest China[J].Journal of Arid Meteorology, 2015, 33(5): 748-755.

[14] Lei L, Sun X J, Gao T C. Research on cloud phase detemination using infrared emissivity spectrum data (1): cloud phase determination[J].Spectroscopy and Spectral Analysis, 2016, 3(12): 3885-3894.

[15] Lei L, Sun X J, Gao T C. Research on cloud phase detemination using infrared emissivity spectrum data (2): retrieval of cloud effective radius and water path[J].Spectroscopy and Spectral Analysis, 2016, 3(12): 3895-3906.

[16] 曾昭亮, 郭建平, 马大喜,等. 基于CALIOP和MODIS数据的气溶胶时空分布特征对比分析[J]. 大气与环境光学学报, 2017, 12(3): 210-220.

    Zeng Zhaoliang, Guo Jianping, Ma Daxi,et al. Spatio-temporal variation of aerosol optical depth from CALIPSO and MODIS data and their intercomparison[J]. Journal of Atmospheric and Environmental Optics, 2017, 12(3): 210-220(in Chinese).

[17] Platnick S, Meyer K G, King M D,et al. The MODIS cloud optical and microphysical products: collection 6 updates and examples from Terra and Aqua[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 55(1): 502-525.

[18] Marchant B, Platnick S, Meyer, K,et al. MODIS collection 6 shortwave-derived cloud phase classification algorithm and comparisons with CALIOP[J]. Atmospheric Measurement Techniques. 2016, 8(11): 11893-11924.

[19] Stephens G L, Vane D G, Boain R J,et al. The CloudSatmission and the A-Train: A new dimension of space-based observations of clouds and precipitation[J]. Bulletin of the American Meteorological Society, 2002, 83(12): 1771-1790.

[20] Winker D M, Pelon J, McCormick M P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds[C].Proceedings of SPIE, 2003, 4893: 1-12.

[21] Qiu Y, Wang J, Yang K. Statistical comparison of cloud and aerosol vertical properties between two eastern China regions based on CloudSat/CALIPSO data[J].Advances in Meteorology, 2017 (2017-3-2): 1-12.

[22] Hagihara Y, Okamoto H, Luo Z J. Joint analysis of cloud top heights from CloudSat and calipso: new insights into cloud top microphysics[J].Journal of Geophysical Research: Atmospheres, 2014, 119(7): 4087-4106.

[23] Garnier A, Faivre M, Dubuisson P,et al. Retrieval of cloud and aerosol properties from combined IIR, lidar and WFC observations of CALIPSO[J]. International Coordination Group on Laser Atmospheric Studies, 2012: 697-700.

[24] Chan M A, Comiso J C. Arctic cloud characteristics as derived from MODIS, CALIPSO, and CloudSat[J].Journal of Climate, 2013, 2(10): 3285-3306.

[25] Kahn B H, Irion F W, Dang V T,et al. The atmospheric infrared sounder version 6 cloud products[J]. Atmospheric Chemistry and Physics, 2013, 13: 14477-14543.

[26] Sassen K, Wang Z, Liu D. Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat[J].Journal of Geophysical Research: Atmospheres, 2009, 114(D4): D00H06.

[27] Yan W, RenJ Q, Lu W,et al. Cloud phase discrimination technology based on spaceborne millimeter wave radar and lidar data[J]. Journal of Infrared And Millimeter Waves, 2011, 30(1): 68-73.

[28] Minnis P, Kratz D P, Coakley Jr J A,et al. Cloud optical property retrieval (subsystem 4.3)[J]. Clouds Earth’s Radiant Energy System Algorithm Theoretical basis Documen, 1995, 3: 135-176.

[29] Kahn B H, Chahine M T, Stephens G L,et al. Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount[J]. Atmospheric Chemistry And Physics Discuss, 2008, 8(5): 1231-1248.

[30] Delano J, HoganR J. A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer[J].Journal of Geophysical Research: Atmospheres, 2008, 113(D7): D07204.

[31] McGill M J, Li L, Hart W D,et al. Combined lidar-radar remote sensing: Initial results from CRYSTAL-FACE[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D7): D07203.

[32] Hu Y, Winker D, Vaughan M,et al. CALIPSO/ CALIOP cloud phase discrimination algorithm[J]. Journal of Atmospheric and Oceanic Technology, 2009, 2(11): 2293-2309.

[33] Delano J, Hogan R J. Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds[J].Journal of Geophysical Research: Atmospheres, 2010, 115(D4): D00H29.

[34] Bedka K M, Dworak R, Brunner J,et al. Validation of satellite-based objective overshooting cloud-top detection methods using CloudSat cloud profiling radar observations[J]. Journal of Applied Meteorology And Climatology, 2012, 51(10): 1811-1822.

[35] Sun-Mack S, Minnis P, Chen Y,et al. Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data[C]. Proceedings of the SPIE, 2007, 6745: 674513.

[36] 梁晓芳, 麻金继. 基于CALIPSO数据反演云相态的方法研究[J]. 大气与环境光学学报, 2012, 7(3): 203-207.

    Liang Xiaofang, Ma Jinji. Cloud phase discrimination algorithm based on CALIPSO data[J].Journal of Atmospheric and Environmental Optics, 2012, 7(3): 203-207(in Chinese).

许丹丹, 麻金继, 魏轶男, 宫明艳, 李正强. 联合CloudSat-CALIPSO-MODIS进行云相态检测的新方法[J]. 大气与环境光学学报, 2018, 13(6): 462. XU Dandan, MA Jinji, WEI Yinan, GONG Mingyan, LI Zhengqiang. New Method for Cloud Phase Retrieval With Combined CloudSat-CALIPSO-MODIS Observations[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(6): 462.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!