红外与毫米波学报, 2015, 34 (2): 203, 网络出版: 2015-05-20   

富营养化水体颗粒有机碳浓度的遥感估算及动态变化特征

Remote estimation and temporal-spatial variability of particulate organic carbon concentrations in eutrophic inland water
作者单位
1 国家海洋局南海环境监测中心, 广东 广州 510300
2 中国科学院南京地理与湖泊研究所 湖泊与环境国家重点实验室, 江苏 南京 210008
3 国家海洋局南海海洋工程勘察与环境研究院, 广东 广州 510310
摘要
基于2011年5次太湖水体现场测量数据, 分析富营养化水体颗粒有机碳(POC)对遥感反射比的影响, 构建了POC含量的遥感定量估算模型, 并结合MERIS遥感影像资料, 揭示了太湖水体POC浓度的时空变化特征.结果表明, 太湖水体中的POC对560~709nm波段范围内的遥感反射比影响显著; 基于海洋水环境特征构建的POC浓度遥感估算模型不适于太湖水体; 通过分析富营养化水体的光学特性以及POC对遥感反射比的影响, 发现MERIS传感器红(620nm)、近红外(709nm)波段遥感反射比的比值与POC浓度具有较好的相关关系(R2=0.75, n=132, RMSE=33.27%, P<0.05), 适于太湖水体POC浓度的遥感估算.
Abstract
Based on five filed cruises in 2011 from Taihu Lake, the effect of particulate organic carbon (POC) assembles on remote sensing reflectance of water was performed to develop a new POC estimation algorithm for eutrophic inland waters. The optical model was used with monthly MERIS data to assess the temporal and spatial variability of surface POC reservoirs in Taihu Lake. The results demonstrated that the particulate organisms highly controlled the remote sensing reflectance of water in the range of 560~709 nm in this lake. The approaches from ocean color did not provide good estimates of POC concentrations in Taihu Lake, a more optically complex water dominated by inorganic detritus. By investigating the optical properties of the eutrophic water, we found that POC was distinctly correlated to the remote sensing reflectance ratio (Rrs(620)/Rrs(709)) with high R2=0.75 and low RMSE=33.27%, the correlation of which provided a good estimate of POC concentrations in Taihu Lake.
参考文献

[1] Amon R M W, Benner R. Bacterial utilization of different size classes of dissolved organic matter[J]. Limnology and Oceanography,1996,41: 41-51.

[2] Gardner W D, Mishonov A V, Richardson M J. Global POC concentrations from in-situ and satellite data[J]. Deep-Sea Research Ⅱ, 2006,53: 718-740.

[3] LIU Zhan-Fei, PENG Xing-Yue, XU Li, et al. Particulate organic carbon (POC) in Taiwan Strait during two cruses in summer 1997 and winter 1998[J]. Journal Of Oceanography in Taiwan Strait(刘占飞,彭兴跃,徐立,等.台湾海峡.1997年夏季和1998年冬季两航次颗粒有机碳研究.台湾海峡),2003,19(1): 95-101.

[4] LIN Jing. Distributions of dissolved organic carbon and particulate organic carbon in the Changjiang estuary and its adjacent area[D]. Shanghai: East China Normal University (林晶.长江口及其毗邻海区溶解有机碳和颗粒有机碳的分布.上海: 华东师范大学),2007: 1-16.

[5] MA Rong-Hua, DUAN Hong-Tao, TANG Jun-Wu, et al. Remote sensing of lake water environmental[M]. Beijing: Science Press(马荣华,段洪涛,唐军武,等.湖泊水环境遥感,北京: 科学出版社),2010: 31-32.

[6] Stramski D, Reynolds R A, Kahru M, et al. Estimation of particulate organic carbon in the ocean from satellite remote sensing[J]. Science, 1999,285: 239-242.

[7] Stramski D, Reynolds R A, Babin M, et al. Relationship between the surface concentration of particulate organic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans[J]. Biogeosciences, 2008,5: 171-201.

[8] Allison D B, Stramski D, Mitchell B G. Empirical ocean color algorithms for estimating particulate organic carbon in the Southern Ocean[J]. Journal of Geophysical Research, 2010,115: C10044.

[9] Son Y B, Gardner W D, Mishonov A V, et al. Multispectral remote-sensing algorithms for particulate organic carbon (POC): The Gulf of Mexico[J]. Remote Sensing of Environment, 2009,113: 50-61.

[10] Jiang G J, Ma R H, Duan H T, et al. Remote determination of chromophoric dissolved organic matter in lakes, China[J]. International Journal of Digital Earth, 2013,Online.

[11] QIN Bo-Qiang, HU Wei-Ping, CHEN Wei-Min, et al. Process and mechanism of environmental changes of Lake Taihu[M]. Beijing: Science Press (秦伯强,胡维平,陈伟民,等.太湖水环境演化过程与机理.北京: 科学出版社), 2004: 2-8.

[12] Duan H T, Ma R H, Xu X F, et al. Two-decade reconstruction of algal blooms in Chinas Lake Taihu[J]. Environmental Science & Technology, 2009,43: 3522-3528.

[13] Simis S, Peters S, Gons H. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water[J]. Limnology and Oceanography, 2005,50: 237-245.

[14] TANG Jun-Wu, TIAN Guo-Liang, WANG Xiao-Yong, et al. The methods of water spectra measurement and analysis Ⅰ: above-water method[J]. Journal of Remote Sensing(唐军武,田国良,汪小勇,等.水体光谱测量与分析Ⅰ: 水面以上测量法.遥感学报),2004,8(1): 37-44.

[15] YANG Gui-Jun, LIU Qin-Huo, HUANG Hua-Guo, et al. Methods for simulating infrared remote sensing images based on scene models[J]. Journal of Infrared and Millimeter Waves(杨贵军,柳钦火,黄华国,等.基于场景模型的热红外遥感成像模拟方法.红外与毫米波学报),2007,26(1): 15-21.

[16] HOBI Labs. Backscattering Sensor Calibration Manual (Revision N). Available online at: http: ∥www.hobilabs.com(accessed October 30,2008), 2008.

[17] Ma R H, Pan D L, Duan H T, et al. Absorption and scattering properties of water body in Taihu Lake, China: backscattering[J]. International Journal of Remote Sensing, 2009,30(9): 2321-2335.

[18] Mueller J L, Fargion G S, Mcclain C R. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation (Maryland: Greenbelt) Revision 4. 2003.

[19] Morel A, Prieur L. Analysis of variations in ocean color[J]. Limnology and Oceanography, 1977,22(4): 709-722.

[20] Chen Y W, Qin B Q, Teubner K, et al. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China[J]. Journal of Plankton Research, 2003,25(1): 445-453.

[21] Ruiz-Verdu A, Simis S G H, de Hoyos C, et al. An evaluation of algorithms for the remote sensing of cyanobacterial biomass[J]. Remote Sensing of Environment, 2008,112: 3996-4008.

[22] MA Rong-Hua, KONG Wei-Juan, DUAN Hong-Tao, et al. Quantitative estimation of phycocyanin concentration using MODIS imagery during the period of cyanobacterial blooming in Taihu Lake[J]. China Environmental Science(马荣华,孔维娟,段洪涛,等.基于MODIS影像估测太湖蓝藻暴发期藻蓝素含量.中国环境科学),2009,29(3): 254-260.

[23] Duan H T, Ma R H, Hu C M. Evaluation of remote sensing algorithms for cyanobacterial pigment retrievals during spring bloom formation in several lakes of East China[J]. Remote Sensing of Environment, 2012,126: 126-135.

[24] Gower J, King S, Borstad G, et al. The importance of a band at 709nm for interpreting water-leaving spectral radiance[J]. Canadian Journal of Remote Sensing, 2008,34(3): 287-295.

[25] Hu C M. A novel ocean color index to detect floating algae in the global oceans[J]. Remote Sensing of Environment, 2009,113: 2118-2129.

[26] Ma R H, Jiang G J, Duan H T, et al. Effective upwelling irradiance depths in turbid waters: a spectral analysis of origins and fate[J]. Optics Express, 2011,19: 7127-7138.

[27] SONG Jin-Ming, XU Yong-Fu, HU Wei-Ping, et al. Biogeochemistry of carbon in China seas and lakes[M]. Beijing: Science Press (宋金明,徐永福,胡维平,等.中国近海与湖泊碳的生物地球化学,北京: 科学出版社),2008: 1-38.

[28] LIU Zi-Lin, PAN Jian-Ming, CHEN-Zhong-Yuan. Contribution of phytoplankton standing stock for the particulate organic carbon in the Southern Ocean[J]. Marine Sciences (刘子琳,潘建明,陈忠元.南大洋浮游植物现存量对颗粒有机碳的贡献.海洋科学), 2004,28(5): 44-49.

[29] Zhang Y L, Qin B Q, Liu M L. Temporal-spatial variations of chlorophyll a and primary production in Meiliang Bay, Lake Taihu, China from 1995 to 2003[J]. Journal of Plankton Research, 2007,29(8): 707-719.

[30] Krasakopoulou E, Karageorgis A P. Spatial and temporal distribution patterns of suspended particulate matter and particulate organic carbon in the Saronikos Gulf (eastern Mediterranean, Greece)[J]. Geo-Marine Letters, 2005,25: 343-359.

姜广甲, 苏文, 马荣华, 段洪涛, 蔡伟叙, 黄楚光, 阳杰, 余威. 富营养化水体颗粒有机碳浓度的遥感估算及动态变化特征[J]. 红外与毫米波学报, 2015, 34(2): 203. JIANG Guang-Jia, SU Wen, MA Rong-Hua, DUAN Hong-Tao, CAI Wei-Xu, HUANG Chu-Guang, YANG Jie, YU Wei. Remote estimation and temporal-spatial variability of particulate organic carbon concentrations in eutrophic inland water[J]. Journal of Infrared and Millimeter Waves, 2015, 34(2): 203.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!